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ABSTRACT 

Industrial byproducts, fly ash and steel slag are widely used in pavement subgrade soil 

stabilization. Similarly, recycled concrete aggregates (RCA) are one of the most commonly used 

waste materials in pavement base construction. These materials are known to leach heavy metals 

and other elements of environmental concerns. On the other hand, cement is frequently used as an 

activator during fly ash and slag stabilization, which considerably increases the material pH, and 

hence, the leaching potentials of toxic constituents. The pH of RCA greatly varies with age, source 

and storage conditions due to carbonation. Additionally, the influence of matric potential on the 

leaching behaviors of RCA remains unknown. This study investigated the leaching characteristics 

of RCA and cement activated fly ash and steel slag stabilized soils through laboratory batch water 

leach test, toxicity characteristic leaching procedure, synthetic precipitation leaching procedure 

and pH-dependent leach tests. The effluent concentrations of calcium (Ca), magnesium (Mg), 

aluminum (Al), barium (Ba), chromium (Cr), copper (Cu), iron (Fe), zinc (Zn), manganese (Mn), 

sulfur (S), dissolved inorganic/organic carbon (DIC/DOC), sulfate (SO4), pH, electrical 

conductivity (EC) and alkalinity were quantified. Moreover, geochemical modeling was 

performed to evaluate the leaching mechanisms of these elements. The effluent concentrations of 

Ca, Ba, Al, SO4 increased; Mg, Cu and DIC concentrations decreased; Fe, Zn and DOC fluctuated; 

and Cr and Mn concentrations remained unaffected by cement addition. Cement activation altered 

the pH dependent release of Ca, Cr, Ba, Zn, S, SO4, DIC and DOC, noticeably. Multiple batch tests 

were required for the comprehensive leaching assessment. Geochemical modeling indicated that, 

except for Cr, the releases of elements from cement activated fly ash and slag stabilized soils were 

solubility controlled. In case of RCA, leaching characteristics were considerably influenced by 

carbonation, particle sizes and liquid to solid ratios (L/S). Distinct pH dependent releases of 
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elements were observed relying on degree of carbonation. The selection of appropriate leach tests 

depended on RCA carbonation and constituent of potential concern. Matric potentials at different 

saturation conditions were found to have an impact on the release of elements from RCA. The 

highest solution pH and leached concentrations of Ca and Ba were originated in the matric 

potential range of 2 kPa to 5 kPa. 
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CHAPTER 1.    GENERAL INTRODUCTION 

In the United States, a number of state highway agencies are adopting the use of industrial 

byproducts and waste materials in their roadway construction practices. The use of industrial by-

products such as fly ash and slag in soil stabilization are very common, owing to their suitable 

physical properties, mechanical properties and economic advantages. Fly ash is a coal combustion 

pozzolanic byproduct of coal power plants. It is collected from exhaust gas either by mechanical 

or electrostatic procedures (Wen et al., 2011). According to American Coal Ash Association 

(ACAA, 2018), in 2016 around 37.8 million tons of fly ash were generated only in the U.S., and 

60% of these were reused. Some of the fly ashes have self-cementitious properties (e.g., Class C 

fly ash) derived from higher amount of calcium oxides (CaO), while others (e.g., Class F fly ash, 

high carbon fly ash) are rich in silica (SiO2), alumina (Al2O3) and iron oxides (Fe2O3) which can 

react with an activator such as cement and lime to produce additional cementitious compounds 

(Cetin et al., 2010; Thomas, 2007). However, during the combustion process at high temperatures, 

coal minerals undergo phase transformations which may render subsequent leaching of toxic 

elements from the fly ashes (Jones, 1995).  

Similarly, steel slag is produced as a by-product of iron manufacturing industry, consisting 

of silicates and alumino-silicates of lime and other bases (primarily, magnesium) which can offer 

cementitious properties (Engström et al., 2013). According to United States Geological Survey 

(USGS) Mineral Commodity Summaries (U.S. Geological Survey, 2018), in the year of 2016, the 

estimated ferrous slag production was 15 to 20 million tons in the United States. These slags 

predominantly consist of CaO–MgO–SiO2–Fe2O3 quaternary system and can be considered as 

weak cement clinkers (Shi, 2004). Slags are more efficient to improve the soil strength, especially 

in the presence of high sulfate salts (Mahedi et al. 2018). Nevertheless, Dayioglu et al. (2018) 



www.manaraa.com

2 
 

 
 

reported the leaching of toxic, heavy and trace metals from steel slag at different environmental 

conditions. 

Several studies have evaluated the leaching behavior and leaching mechanisms of metals 

from fly ash and slag stabilized soils (Bin-Shafique et al., 2006; Cappuyns et al., 2014; Cetin et 

al., 2013; Cetin and Aydilek, 2013; Gomes and Pinto, 2006; Kogbara et al., 2013; Kogbara and 

Al-Tabbaa, 2011; Komonweeraket et al., 2015b, 2015c, 2015a; Windt et al., 2011; Zhang et al., 

2016). Fly ashes and slags are often used with cement in soil stabilization for strength and stiffness 

requirements due to their low self-cementing potentials. Cement addition substantially enhances 

the pH of soil which may induce further leaching of certain amphoteric metals such as aluminum 

(Al), Barium (Ba), chromium (Cr), copper (Cu) and zinc (Zn). Therefore, the leaching behavior 

and leaching controlling mechanisms of fly ash or slag treated soil are specifically important, when 

a calcium-based activator such as cement is used. There is a lack of information on the leaching 

behavior and leaching mechanisms of contaminants from these widely implemented cement 

activated fly ash or slag stabilized soils. In addition, previous studies evaluated the leaching of 

metals for a limited pH range, disregarding the influence of commonly occurred benign elements 

such as Ca, Mg, sulfate (SO4), nitrate (NO3), dissolved organic carbon (DOC), dissolved inorganic 

carbon (DIC) etc. These elements are largely released from fly ash and slag and their mode of 

occurrence, precipitation and substitution essentially control the leaching of other environmentally 

sensitive elements.  

Correspondingly, aggregates derived from natural sources have been used traditionally as 

pavement base materials. In recent times, the extraction of natural aggregates has become more 

labor intensive and costly due to high quality resource depletion and environmental concerns 

(Faysal et al., 2016). Therefore, crushed waste concrete commonly termed as recycled concrete 
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aggregates (RCA) are being considered as a possible alternative to virgin aggregates (Chen et al., 

2012). Demolition of existing structures such as buildings, concrete pavements, bridges, curbs and 

gutters are the main sources of recycled crushed concrete aggregates which may also be generated 

from concrete over-runs associated with new constructions. After the process of recycling, cement 

paste left attached to the surface of the aggregates which can be a potential source of leached 

constituents (Bestgen et al., 2016a, 2016b).  

Previous studies evaluated the leaching potential of RCA based on pH and standard test 

procedures (Bestgen et al., 2016a; Chen et al., 2012, 2009, Engelsen et al., 2012, 2010, 2009). 

However, inconsistency within the results of previous studies are often apparent owing to the 

variety of test procedures, age, location and derived material sources (i.e., building demolition, 

concrete pavement, stockpile). Additionally, Engelsen et al. (2010) pointed out that the leaching 

potentials of RCA materials greatly varies depending on RCA degree of carbonation. Therefore, a 

comprehensive assessment of the leaching behavior of the elements from these materials is 

required, encompassing the widely used test procedures and diverse sources. Moreover, in all 

conventional leach test procedures influent solutions are added in excess to the materials of 

interest. Test procedure varies based on extraction fluid type, liquid to solid ratio, shaking period, 

shaking rate and extraction/filtration procedure. However, these methods may not represent the 

actual field conditions because RCA may become saturated only during/just after a rainfall event 

or in an inundation scenario. In most cases, the RCA used as pavement base materials remains 

unsaturated. Nonetheless, there is continuous infiltration or seepage of water from the unsaturated 

RCA towards the ground water table. The leaching behavior of metals in this unsaturated flow yet 

remained unexplored. 
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1.1 Research Goal and Objectives  

The objectives of this proposed study are to (1) investigate the leaching behavior of 

elements from cement activated fly ash and slag stabilized soils and RCAs; (2) evaluate the effects 

of leaching regulatory factors such as stabilizer types and their addition rates, liquid to solid ratios, 

total metal contents, environmental conditions, pH and particle sizes; (3) identify and access the 

leaching controlling mechanisms; (4) provide quantitative comparisons between standard leach 

test procedures; (5) investigate the effect of carbonation on the leaching from RCA; and (6) 

evaluate the leaching behavior of elements under different saturated conditions and matric 

potentials. The experimental program to achieve these goals consists of the following tasks: 

1. Determining physical and chemical properties of the materials used in this study by 

exploiting particle size distribution, compaction, X-ray diffraction (XRD) and X-ray 

fluorescence (XRF) analyses.  

2. Performing acid digestions of cement, fly ash, slag, soil and RCAs to measure total 

metal contents.  

3. Preparing different combinations of cement activated fly ash and slag treated samples. 

Collecting RCAs from a variety of geographic location and source of origin. 

4. Performing batch water leach tests (WLT) for a quick estimation of the leaching 

behavior of metals. 

5. Performing toxicity characteristic leaching procedure (TCLP) to evaluate the leaching 

behavior in landfill containment condition. 

6. Performing synthetic precipitation leaching procedure (SPLP) to evaluate the leaching 

behavior in acid rain condition. 

7. Performing USGS leach test to evaluate the field leachability. 
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8. Performing pH dependent leach test to identify the leaching patter of metals and 

minerals.  

9. Implementing pressure cell method to evaluate the leaching behavior of metals at 

different matric potentials.  

10. Quantifying effluent cations and anions concentrations and other chemical properties 

of interests from cement activated fly ash and slag treated soils, fly ash, slag, cement 

and soil alone; and RCAs. 

11. Identifying the leaching controlling mechanisms via geochemical modeling program 

Visual MINTEQ.  

This study investigates the leaching behavior of 10 metals (Aluminum (Al), Barium (Ba), 

Calcium (Ca), Chromium (Cr), Copper (Cu), Iron (Fe), Magnesium (Mg), Manganese (Mn), Sulfur 

(S) and Zinc (Zn)) and 5 different elements of significance (Sulfate-SO4, Nitrite-NO2, Nitrate-

NO3, Dissolved Inorganic Carbon-DIC, and Dissolved Organic Carbon-DOC). In addition, 

effluent pH, electric conductivity and alkalinity were quantified.  

1.2 Organization of the Dissertation 

This dissertation consists of six chapters: general introduction, four research papers, and 

conclusions and recommendations. Chapter 1 provides the general introduction, describing the 

requirements and objective of this research endeavor. Chapter 2 explores the leaching 

characteristics of the elements from cement activated fly ash and slag treated soils in TCLP, SPLP, 

WLT effluents. Geochemical modeling was performed based on the solution concentrations of the 

elements from these standard batch tests. Chapter 3 describes the pH dependent leaching behavior 

of Al, Cu, Fe and Zn from cement activated fly ash and slag treated soils. Geochemical modeling 

was performed to investigate the leaching controlling mechanisms of the selected elements based 

on pH dependent leach tests concentrations. Chapter 4 focus the leaching behavior and leaching 



www.manaraa.com

6 
 

 
 

controlling mechanisms of Ca, Mg, Ba, Mn, Cr and S based on pH dependent leach tests. Chapter 

5 discusses the influence of carbonation on the leaching characteristics of recycled concrete 

aggregates (RCA). Geochemical modeling was performed to investigate on the leaching 

controlling mechanisms of the elements from the RCAs with a varying degree of carbonation. 

Chapter 7 summarizes the key findings of this study. Several research directions are provided for 

future studies.   
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CHAPTER 2.    LEACHING OF ELEMENTS FROM CEMENT ACTIVATED FLY ASH 
AND SLAG AMENDED SOILS  

A paper submitted to Chemosphere 

Masrur Mahedi and Bora Cetin 

2.1 Abstract 

The leaching behavior and leaching controlling mechanisms of four elements: chromium 

(Cr), copper (Cu), iron (Fe) and sulfur (S) from cement activated fly ash and slag stabilized 

pavement subgrade soils were evaluated. Synthetic precipitation leaching procedure (SPLP), batch 

water leach test (WLT), toxicity characteristic leaching procedure (TCLP) and pH-adjusted leach 

tests were conducted. Several factors such as stabilizer type and addition rate, cement content, 

elemental concentration and pH were considered for parametric study. Geochemical equilibrium 

model MINTEQA2 was implemented to identify the leaching controlling mechanisms of the 

metals. Effluent pH played the most vital role on the leaching behavior of the elements. 

Quantitative assessments between the test methods indicated significant variations in the leached 

metal concentrations. Cr and Cu showed amphoteric leaching behaviors, whereas Fe and S 

followed cationic leaching patterns. Cr3+, Cu2+, Fe3+ and S6+ were identified to be the dominant 

oxidation states of the metals of interest. According to the geochemical analyses, leaching of these 

elements were solubility controlled. Dissolution-precipitation of oxide and hydroxide minerals 

controlled the leaching of Cr, Cu, Fe and S from cement activated fly ash and slag stabilized 

subgrade soils. 

Keywords: Metal leaching, Soil stabilization, Cement, Fly ash, Slag, Geochemical 

modeling 
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2.2 Introduction 

In the United States, a number of state highway agencies are adopting the use of waste 

materials and industrial byproducts in their construction applications. The recycling of the 

materials considerably reduces the natural resource depletion, construction cost, labor and 

declination of landfill spacing. Fly ash and steel slag are the two widely used recycled materials in 

pavement constructions with great applicability in subgrade soil stabilization. Fly ashes are 

byproducts from coal burning electric power plants, whereas steel slags are the non-metallic 

offshoots generated in different stages of steel production (Engström et al. 2013; Cetin et al. 2014). 

Some of the fly ashes (e.g. Class C) have self-cementing properties resulting from higher amount 

of calcium oxides (CaO), while others (e.g. Class F, high-carbon fly ash) are effective pozzolans 

owing to the presence of silica (SiO2), alumina (Al2O3) and iron oxides (Fe2O3), capable of 

producing cementitious compounds with the presence of an activator such as lime and cement 

(Mahedi et al. 2018). The combustion of lignite or subbituminous coal generates Class C fly ash, 

whereas Class F fly ash is generated when bituminous coal is used (Thomas 2007; Senapati 2011). 

Besides, steel slags are frequently represented by CaO–MgO–SiO2–Fe2O3 quaternary system and 

can be considered as weak cement clinkers (Shi 2004). Therefore, soil stabilization becomes more 

practical and economical with fly ashes or slags, where other traditional and nontraditional 

techniques (e.g. cement, lime, excavation and replacement, polymer, enzyme, biocementation) are 

proven to be costly and labor intensive (Yilmaz et al. 2019).  

Strength, stiffness and durability properties of fly ash and slag treated soils are deemed to 

be satisfactory by previous studies (Cetin et al. 2010; Tastan et al. 2011; Dayioglu et al. 2014, 

2018; Mahedi et al. 2018; Yilmaz et al. 2019). Nevertheless, limited information exists on their 

environmental impacts because of the leaching of toxic substances into the surface and 

groundwater (Cetin et al. 2012b, 2014). As the coal minerals undergo phase changes during the 
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combustion processes, use of fly ashes may induce substantial leaching of ecologically harmful 

metals into the environment (Jones 1995; Qureshi et al. 2018). Gomes and Pinto (2006) reported 

leaching of heavy metals from steelmaking slags. Dayioglu et al. (2018) concluded that leaching 

of heavy and toxic metals from steel slags is largely dependent on the environmental conditions. 

Therefore, conflicts within the previous studies are often apparent (Bestgen et al. 2016a), owing 

to the variety of leach test procedures. A comprehensive assessment of the leaching behavior of 

the metals is required, encompassing the widely used test procedures. Moreover, the effect of pH 

is often isolated, though the pH plays an important role on the leaching behavior of metals from 

fly ash and slag treated soils (Komonweeraket et al. 2015b). Furthermore, leaching behavior of 

steel slag relating mineralogy and element availability is still inadequate (Spanka et al. 2018). 

Besides, fly ashes and slags are often used with cement in soil stabilization to initiate 

pozzolanic reactions due to their lower cementing potential. Cement addition substantially 

enhances the pH of soil which may induce further leaching of metals such as chromium (Cr), 

selenium (Se), and arsenic (As) (Cetin et al. 2012a). Therefore, the leaching behavior and leaching 

controlling mechanisms of fly ash and steel slag treated soil are specifically important, when a 

calcium-based activator such as cement is used. Furthermore, leaching controlling mechanisms 

from slag treated soil have not yet been investigated. It is necessary to understand the leaching 

mechanisms, since the toxicity of the metals largely depends on their speciation and/or oxidation 

states. 

The main objective of this study was to evaluate the leaching behavior and leaching 

controlling mechanisms of metals from cement activated fly ash and steel slag treated subgrade 

soil based on SPLP, WLT, TCLP and pH-adjusted leach tests. Cr, Cu, Fe and S were selected as 

the elements of potential concern based on their environmental impacts determined by previous 
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studies (Bestgen et al. 2016a, b). The U.S. EPA listed Cr and Cu on the priority contaminant list, 

whereas Fe and S (as SO42-) are listed on secondary priority list. Finally, experimental data were 

utilized to identify the predominant metal species and leaching controlling mechanisms by 

implementing the geochemical modeling program MINTEQA2.  

2.3 Materials 

Collapsible and frost susceptible Iowa loess soil treated with two different fly ashes and 

ground granulated blast-furnace steel slag was used for the experimental setup of the study. 

According to Unified Soil Classification System (USCS), loess soil was classified as low plasticity 

silt (ML) with 82% fines (< 0.05 mm) and 11% clay (< 0.02 mm) size particles. The liquid limit 

(LL) and plasticity index (PI) of the soil were found to be 24 and 4, respectively; following the 

standard method designated by ASTM D4318. The American Association of State Highway and 

Transportation Officials (AASHTO) classification of the soil was A-4. 

Type I/II Portland cement was utilized as an activator to enhance the pozzolanic reactions 

of fly ashes and slag. The basic oxide components of the materials used in this study are provided 

in Table 2.1. Based on the chemical components, fly ashes were classified and Class C and F 

following the guidelines provided in ASTM C618. As indicated earlier, Class C and F are the most 

widely implemented fly ashes in soil stabilization due to their self-cementing capacities and 

pozzolanic activities. The CaO content of steel slag was found to be 39.8%, indicating its 

cementation potentials. The SiO2, Al2O3 and Fe2O3 contents of steel slag were 35.7%, 9.9% and 

0.6% respectively, which could contribute significantly in the stabilization process. Additionally, 

the total metals content of the materials was determined based on EPA Method 3050B and are 

reported in Table 2.1. As presented in Table 2.1, the Cr, Cu and Fe contents were the highest in 

Class C fly ash, whereas the maximum amount of S was found in cement. Except for Fe, all the 

metal contents were the lowest in loess soil. The minimum amount of Fe was found in steel slag.  
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2.4 Method 

2.4.1 Leach Test Sample Preparation  

An array of soil-fly ash-cement and soil-slag-cement mixtures was prepared on weight 

basis by varying the fly ash or steel slag content in the range of 10% to 40%. Previous studies 

recommend the maximum use of 20% fly ash and slag in soil stabilization for strength and stiffness 

requirements (Tastan et al. 2011; Oormila and Preethi 2014; Aldeeky and Al Hattamleh 2017; 

Yilmaz et al. 2019). In this study, 40% soil-fly ash and soil-slag mixtures were prepared for 

comparative purposes. Cement was implemented as an additive at the addition rates of 3% and 

6%. Due to relatively lower self-cementing properties of Class C fly ash, cement and Class C fly 

ash were used together as a composite grout (Mahedi et al. 2019). All mixtures were prepared at 

optimum moisture content (w0) to ensure adequate compaction and maximum dry density (γd). 

Then, the mixtures were cured for 7 days at 21°C temperature and 100% relative humidity room. 

After curing, mixtures were sieved through U.S. No. 10 sieve before being subjected to the leach 

tests. Furthermore, leach tests were also performed on fly ashes, steel slag, cement and soil alone. 

A summary of the mixtures is provided in Table 2.2 along with their corresponding w0, γd and total 

metal contents of the blends. 

2.4.2 SPLP Leach Test 

Synthetic precipitation leaching procedure (SPLP) designated by U.S. EPA method 1312 

was performed on soil, fly ashes, slag, cement, soil-fly ash-cement and soil-slag-cement blends to 

simulate the acid rain condition (Kosson et al. 2002). The extraction fluid was prepared with a 

mixture of reagent grade sulfuric and nitric acid (60%/40% by weight) and diluting the solution 

with nanopure water to a pH of 5±0.05. A constant liquid to solid (L/S) ratio of 20 was maintained 

for all the SPLP sample preparation. Samples were rotated end-to-end for 18±2 hours at a rotation 

rate of 28 rpm. The pH of the solutions was then measured, considering the equilibrium condition 
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was met. Finally, the samples were subjected to vacuum filtration using 0.7-μm borosilicate glass 

fiber filters. Filtered samples were acidified with 10% trace metal grade nitric acid (HNO3) to a 

pH less than 2, and stored for further analysis in acid-washed 50 mL centrifuged tubes at 

temperature less than 4°C.  

2.4.3 Batch Water Leach Test  

Standard method designated by ASTM D3987 was followed for batch water leach test 

(WLT). Two basic modifications were done to the standard method. Firstly, samples were prepared 

with a liquid to solid (L/S) ratio of 10 to simulate the representative field condition. According to 

Kosson et al. (2002), L/S ratios higher than 10 could occurred in fields with relatively very high 

infiltration rates. Secondly, to provide stable reaction conditions, 0.02 M sodium chloride (NaCl) 

was used as the influent solution (Cetin et al. 2014). Samples were rotated end-over-end fashion 

at a rate of 29 rpm for 18±0.25 hours. Samples were then pressure filtered through 0.45-μm pore 

size and 25 mm diameter membrane disk filter papers using filter holders and 60 mL plastic 

syringes. Filtered samples were stored for further metal analysis following the same storage 

procedure described in SPLP method section.   

2.4.4 TCLP Leach Test  

To simulate the leaching behavior in landfill containment condition, toxicity characteristic 

leaching procedure (TCLP) designated by U.S. EPA method 1311 was implemented (Bestgen et 

al. 2016a). The extraction solution for the test was prepared by adding 5.7 mL glacial acetic acid 

(CH3COOH) and 64.3 mL 1 N sodium hydroxide (NaOH) into nanopure water and diluting the 

solution to 1 liter. Properly prepared leachant always had the pH of 4.93±0.05. The leachate 

samples were prepared with a liquid to solid (L/S) ratio of 20. The agitation, filtration and storage 

procedure were the same for both TCLP and SPLP methods.  
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2.4.5 pH-Adjusted Leach Test 

The effect of pH on the leaching behavior of metals was investigated by regulating the 

sample pH at acidic (pH ≅ 2), neutral (pH ≅ 7), and basic (pH ≅ 13) conditions, with tolerance of 

± 0.5 unit. The U.S. EPA method 1313 defined in Leaching Environmental Assessment 

Framework (LEAF) was implemented. Samples were prepared at a constant liquid to solid ratio of 

10, and the pH adjustments were performed by adding specific amount of 2 N trace metal grade 

nitric acid (HNO3) or 1 N ACS grade potassium hydroxide (KOH) into nanopure water. The 

required amount of acid/base for a target pH condition was predetermined from the acid 

neutralizing capacity of the mixtures and is presented in Table 2.3. The samples were agitated for 

48±2 hours at a rotation rate of 28 rpm to achieve stable pH conditions. Subsequently, pressure 

filtration through 0.2-μm pore size and 25 mm diameter membrane disk filter papers was applied 

following the common preservation method implemented in this study.  

2.4.6 Total Metal Content 

To determine the total metal content of the materials, acid digestions were performed 

following the U.S. EPA method 3050B. The digestion technique dissolves almost all the elements 

that could become environmentally available. A representative 1 g sample was digested with the 

repeated additions of concentrated trace metal grade nitric acid (HNO3) and 30% hydrogen 

peroxide (H2O2). For complete digestion, heating at 95±5 °C temperature and refluxing were 

applied according to the standard. Concentrated hydrochloric acid (HCl) was also added to the 

nitric acid-peroxide digestate, heated and refluxed. Finally, the digestate was filtered through 

Whatman No. 41 filter paper. The residue and filter paper were washed with hot HCl and hot water 

subsequently, to increase the solubility of the metals. The filtrate was then stored in 100 mL 

volumetric flasks at temperature less than 4°C for further analysis.  
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2.4.7 Metal Analysis  

Metal concentrations in the preserved samples were determined by utilizing inductively 

coupled plasma optical emission spectroscopy (ICP-OES). Commercially produced multi-element 

standard solutions were used to standardize the instrument with linear calibration curves. The 

calibration curves were verified by analyzing blanks and check standards of know concentrations 

at every 9 samples. The minimum detection limits (MDLs) of ICP-OES for Cr, Cu, Fe and S were 

0.5 µg/L, 0.07 µg/L, 3.2 µg/L and 22 µg/L, respectively. 

2.4.8 Geochemical Modeling 

Based on the thermodynamic data, geochemical equilibrium models are capable of 

predicting the aqueous concentrations of elements, assuming an equilibrium between the effluent 

and solubility controlling minerals of the elements of potential concern (Allison et al. 1991). 

Therefore, the numerical model MINTEQA2 was used to identify the predominant oxidation states 

and speciation analysis of the metals. The geochemical equilibrium model MINTEQA2 was run 

in two steps. Initially, the speciation analyses were performed to identify the dominant oxidation 

states of the elements using their aqueous concentrations and effluent pH values. An equilibrium 

between the leachate and atmospheric carbon dioxide was assumed at 25 °C, since the sample 

preparation, collection and filtration processes were exposed to the atmosphere. The redox 

sensitive elements were specified, and the dominant oxidation states of the elements were 

estimated from the MINTEQA2 predicted aqueous concentrations of the species. In the second 

step, the log activities of all the element species in the solution and the saturation indices of the 

effluents with respect to the minerals were calculated by entering the elemental concentrations as 

per their oxidation states determined previously. An activity diagram for each of the elements was 

generated by plotting the MINTEQA2 calculated log activities of the elements against the 

laboratory measured effluent pH values. If the leaching of an element was controlled by the mineral 
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solubility, the activities of the element fell in close proximity to the solubility/stability line of the 

minerals (Garavaglia and Caramuscio 1994).  

2.5 Results and Discussion 

2.5.1 Effect of Cement Content on the Leaching Behavior 

Figure 2.1 presents the influence of cement content on the leaching behavior of the 

elements, along with the effluent concentrations from cement only. As observed in Fig. 2.1, Cr 

and Cu concentrations increased with the increase in cement content. It is well known that Cr and 

Cu follow amphoteric leaching patterns where concentrations are minimum at neutral conditions 

but increase in both acidic and alkaline pH (Komonweeraket et al. 2015b). With the increase in 

cement content, the effluent pH increased in alkaline condition which eventually raised the leached 

concentrations of Cr and Cu. Moreover, aqueous concentrations of these elements were also higher 

for cement. In contrast, Fe concentrations decreased with the increase in cement content from 3% 

to 6%. Fe followed a cationic leaching pattern where concentrations decreased as the effluent pH 

increased with an increase in the cement dosage. Moreover, 100% cement leached a lower amount 

of Fe compared to soil-fly ash-cement and soil-slag-cement mixtures. S concentrations slightly 

increased with 3% cement incorporation but remained almost unchanged at 6% addition rates. 

100% cement leached a higher amount of S, which may have occurred due to higher elemental 

concentrations of S in cement (Table 2.1). 

2.5.2 Effect of Fly Ash and Slag Content on the Leaching Behavior 

Leached concentrations of Cr, Cu, Fe and S from SPLP tests as a function of fly ash and 

slag content are presented in Fig. 2.2. As seen in Figs. 2.2a and 2.2b, leached Cr and Cu 

concentrations were higher for specimens mixed with fly ashes compared to slag mixtures. For the 

initial addition rates (10%), Cr and Cu concentrations increased noticeably, but remained within a 

narrow range at higher application dosages. It is anticipated that the pH of the solution played a 
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vital role on the leaching behavior of these metals. As seen in Table 2.4, except the initial addition 

rates, pH of the mixtures does not change significantly with the increase in fly ash and slag content, 

which is the most probable reason for the observed leaching behavior. However, the highest 

amounts of Cu leached from Class C fly ash, whereas leached Cr concentrations were lower 

compared to Class F fly ash blends. Based on the total metal analysis, Class C fly ash mixtures 

have the highest Cu content (Table 2.4) which may have induced higher leaching of Cu. Cr 

contents in Class C and F fly ash are comparable (Table 2.1, 70 mg/kg and 69.3 mg/kg, 

respectively), yet Class F fly ash blends may have leached higher amounts of Cr due to its lower 

CaO content (12%) compared to Class C fly ash (26%). Higher CaO content of Class C fly ash 

released higher Ca2+ into the solution which could have complexed with Cr and precipitated as 

insoluble Ca-Cr3+ complexes at alkaline conditions (Cornelis et al. 2008). Thus, Cr leaching was 

reduced from Class C fly ash mixtures. 

Leached Fe concentrations fluctuated with fly ash and slag content (Fig. 2.2c). Varying 

degree of hydration of the mixture may have caused the erratic nature of Fe leaching. According 

to Goswami and Mahanta (2007), degree of pozzolanic activity largely influences the leaching 

behavior of Fe. Furthermore, 100% Class C fly ash leached lower amount of Fe compared to the 

cement activated Class C fly ash treated mixtures, whereas the observed behavior is opposite for 

Class F fly ash and slag blends.  

Sulfur concentrations initially increased with the addition of fly ash and slag content (Fig. 

2.2d). After the initial increase, no significant change in concentrations was observed for Class C 

fly ash mixtures, whereas concentrations kept increasing with the increase in Class F fly ash 

content. Fruchter et al. (1990) claimed that sulfur mostly exists as sulfate (SO42-) in fly ashes, 

especially in oxidizing conditions. At higher pH, at the presence of free lime, sulfate precipitates 
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as insoluble ettringite and reduces the solution concentrations (Hassett et al. 2005). Small 

variations in pH of Class C mixtures, and lower Ca content of Class F fly ash possibly influenced 

the leaching behavior of sulfur. For slag mixtures, S concentrations fluctuated within a narrow 

range (18.2-23.6 mg/L), indicating lesser influence of pH and application dosage on the leaching 

of sulfur from soils mixed with slag and cement. 

2.5.3 Comparisons between SPLP, WLT and TCLP 

An attempt was made to compare the leachability of the elements in different test methods, 

representing varying environmental conditions. As depicted in Fig. 2.3, leached Cr and Cu 

concentrations from cement activated fly ash and slag treated soils were the highest in TCLP 

effluent, whereas the lowest concentrations were observed in SPLP extracts. WLT concentrations 

were intermediate, falling between TCLP and SPLP concentrations. Among three different test 

methods, TCLP extraction fluid was the most acidic (pH = 4.93±0.05), which had increased the 

degradation of the blends and hence, the solubility of the elements (Bestgen et al. 2016a). WLT 

effluent solutions contained a significant amount of dissolved Cl- ions since the extraction fluid 

was prepared with 0.02 M NaCl. Mobile metal-Cl- complexes in the WLT effluents are thought to 

be the main reason for higher Cr and Cu concentrations in WLT compared to SPLP (Engelsen et 

al. 2012). Sulfur also showed a similar leaching behavior, with higher concentrations in TCLP 

extract and comparable leachability in SPLP and WLT solutions (Figs. 2.4a-c). As seen in Figs. 

2.4d-e, with few exceptions, the highest concentrations of Fe were associated with WLT which 

was followed by the SPLP and TCLP concentrations (FeWLT > FeSPLP > FeTCLP). Bestgen et al. 

(2016b) reported an increase in Fe concentrations at pH higher than 12, which may have induced 

by the hydrolysis of Fe3+ in the form of Fe(OH)4- (Allanore et al. 2007). The effluent pH of the 

mixtures in SPLP and WLT were in the range of 11.82-12.14, whereas the pH for TCLP solutions 
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was between 7.92 and 11.41 (Table 2.4). Therefore, formation of Fe(OH)4- was less likely in TCLP 

effluent which probably yielded lower Fe concentrations.  

2.5.4 Influence of Total Metal Content  

Fly ashes and slag contained higher amounts of metals, but as indicated in Fig. 2.5, 

regardless of the test methodology, higher elemental concentrations do not necessarily induce 

higher leaching of metals. Figure 2.5 illustrates the leaching of Cr, Cu, Fe and S in SPLP, WLT 

and TCLP solutions along with the total metal contents of the mixtures. As seen in Figs. 2.5a-c, 

total metal contents did not influence the effluent concentrations of Cr, Cu and Fe. Sulfur 

concentrations tend to increase with the increase in total metal content (Fig. 2.5d), indicating a 

direct effect of source additions on the leaching behavior of sulfur. Iwashita et al. (2005) also 

claimed that, the leaching of S is correlated to its total concentration in fly ash.  

2.5.5 pH Conditions and the Leaching of Elements 

Figures 2.6 and 2.7 show the leaching of Cr, Cu, Fe and S from soil, cement, fly ashes, 

slag, and cement activated soil-fly ash and soil-slag mixtures at three different pH conditions 

(acidic, neutral and basic). Leached concentrations of Cr, Cu, Fe and S were highest in acidic 

conditions. Cr and Cu concentrations decreased monotonically in both neutral and alkaline 

conditions (Fig. 2.6). Fe concentrations decreased rapidly at neutral pH and remained low 

throughout the basic conditions (Fig. 2.7). Sulfur concentrations did not differ much in acidic and 

neutral conditions, though a subsequent decrease in concentrations was observed in an alkaline 

environment. Under an acidic environment, dissolution of metal bearing minerals such as Eskolaite 

(Cr2O3), Tenorite (CuO), Hematite (Fe2O3), gypsum (CaSO4·2H2O), anhydrite (CaSO4) and 

ettringite (Ca6Al2(SO4)3(OH)12·26H2O) increased the release of the elements into the aqueous 

solutions (Komonweeraket et al. 2015b). As the pH increased, concentrations of elements 

decreased due to the precipitation and/or adsorption of the ions (Mizutani et al. 1996).  
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However, at acidic conditions, Class F fly ash mixtures leached the highest Cr 

concentrations (Figs. 2.6a-c) whereas, Cu and Fe leaching were the highest for the Class C fly ash 

blends (Figs. 2.6d-f and 2.6a-c). Similar leaching behaviors were also observed in neutral 

conditions with a few exceptions in Cu and Fe concentrations (20% and 40% slag blends). Mass 

of elements in the mixtures played an important role on the leaching concentrations at these pH 

conditions. From the elemental analyses, the highest concentrations of Cu and Fe were detected in 

the Class C fly ash, while Cr concentrations were the highest in the Class F fly ash (Table 2.1). 

20% and 40% slag treated blends had the lowest pH (Table 2.4) among all of the samples prepared 

in neutral conditions. This is the most probable reason for higher Cu and Fe leaching from these 

blends at neutral conditions. In contrast, the highest concentrations of Cr, Cu and Fe in alkaline 

conditions occurred in the leachate of Class F fly ash blends. Under alkaline conditions, Ca2+ 

precipitates as calcite (CaCO3) and/or aragonite (CaCO3) which work as an effective absorbent of 

the metals of interest (Ahmad et al. 2012; Komonweeraket et al. 2015c, a). Lower CaO content of 

Class F fly ash reduced the formation and precipitation of CaCO3. Therefore, higher amounts of 

Cr, Cu and Fe cations remained in the effluent of Class F fly ash mixtures. However, slag mixtures 

showed the highest leaching of sulfur in all of the environmental conditions (Figs. 2.7d-f), 

indicating that ettringite formation was less likely to occur in slag blends (Zhang et al. 2016). 

Depending on the pH conditions, 100% cement showed less variation in Cr, Cu and S 

concentrations. Additionally, at neutral and basic pH, cement leached the highest amount of Cr, 

Cu, and S. Cement had the highest pH buffering capacity among all of the materials used in this 

study. This required larger amounts of acid or base additions to the solution for the pH adjustment. 

Higher amount of acid or base may have degraded the cement paste vigorously and increased the 

effluent metal concentrations. However, leached Fe concentrations from cement decreased 
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gradually toward neutral and alkaline environments. 100% slag leached higher Fe concentrations 

at these pH conditions, yet Fe concentrations from cement were higher compared to those leached 

from fly ashes. Relatively lower pH of slag yielded higher Fe concentrations in these pH 

conditions.  

From the aforementioned observations, it is evident that pH played the most vital role on 

the leaching behavior of the elements from cement activated fly ash and slag stabilized soils. 

Therefore, aqueous concentrations of the elements from all of the leach tests (SPLP, WLT, TCLP 

and pH controlled) are plotted against their corresponding pH values in Fig. 2.8. Table 2.4 tabulates 

the pH values of the blends in different test methods, and pH conditions. However, as indicated in 

Figs. 2.8a and 2.8b, the amphoteric leaching patterns of Cr and Cu were observed, where 

concentrations increase in both acidic and alkaline conditions. Minimum concentrations of Cr and 

Cu were associated with the pH ranges of 10.5-11. Similar amphoteric leaching patterns of Cr and 

Cu were also reported by the previous studies (Komonweeraket et al. 2015b; Bestgen et al. 2016a, 

b; Li et al. 2018). Dissolution and precipitation of oxide and hydroxide minerals greatly influenced 

the solubility of these amphoteric leaching elements (Komonweeraket et al. 2011). However, in 

the most cases, Cr concentrations exceeded the maximum contaminant level (MCL) of 0.1 mg/L 

specified by the U.S. EPA for drinking water. Excluding extreme acidic conditions (pH ≤ 2), Cu 

concentrations were lower than the U.S. EPA specified MCL of 1.3 mg/L. 

As depicted in Figs. 2.8c and 2.8d, Fe and S showed cationic leaching patterns, where 

concentrations decreased with the increase in pH. A sharp drop in Fe concentrations was observed 

in the pH range of 6-7, whereas S concentrations decreased dramatically at pH higher than 10. 

With the increase in pH towards the neutral conditions, Fe precipitates as the amorphous oxy-

hydroxide and subsequently reduces the aqueous concentrations (Warren and Dudas 1989). Sulfur 
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concentrations may have also been reduced due to the precipitation of ettringite at pH higher than 

10.7 (Gabrisová et al. 1991). Except for the acidic pH, Fe and S (as SO4) concentrations were 

lower than the U.S. EPA specified MCLs of 0.3 and 250 mg/L, respectively. 

2.6 Geochemical Modeling 

Numerical model MINTEQA2 was implemented to determine the predominant oxidation 

states and leaching controlling mechanisms of the elements from cement activated fly ash and slag 

amended soils. Two main equilibrium mechanisms, solubility and sorption control the leaching of 

elements from industrial by-products such as fly ash and steel slag (Fruchter et al. 1990; Mudd et 

al. 2004). In the cases where solubility controls the leaching of elements, based on thermodynamic 

data, geochemical equilibria models are found to be successful in predicting aqueous concentration 

of the elements (Komonweeraket et al. 2015b; Bestgen et al. 2016a). Therefore, leached metals 

concentrations from all the leach tests and the corresponding solution pH were used as input for 

the MINTEQA2 program. Saturation indices and activity of the elements were calculated along 

with the identification of leaching controlling minerals of the elements of interest. The analyses 

indicated that the dominant oxidation states of Cr, Cu, Fe and S were Cr3+, Cu2+, Fe3+ and S6+, 

respectively. The leached Cr concentrations in this study largely exceeded the EPA specified MCL 

of 0.1 mg/L. Nonetheless, speciation revealed that the majority of the Cr was in the form of 

trivalent Cr (III), which was a much less concern to human health than the Cr (VI) (Izquierdo et 

al. 2011; Izquierdo and Querol 2012). According to Huggins et al. (1999), Cr6+ could easily reduce 

by SO2 in furnace flue gas, and therefore Cr3+ may become the dominant one in the fly ash 

leachates. 

Despite of different stabilizer types and addition rates, similarities in leaching behavior and 

leaching controlling mechanisms were observed. As indicated in Fig. 2.9a, the leaching of Cr3+ is 

solubility controlled in the pH range of 7 to 13. Amorphous Cr(OH)3 and eskolaite (Cr2O3) have 
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comparable solubility and are identified as the controlling hydroxide and oxide minerals for the 

leaching of Cr3+. Previous studies also reported that leaching of Cr3+ is controlled by amorphous 

and crystalline Cr(OH)3 (Reardon et al. 1995; Komonweeraket et al. 2015b). Presence of Cr2O3 

also promotes the formation of aqueous chromium hydroxides (Komonweeraket et al. 2015b).  

Tenorite (CuO) and Cu(OH)2 were recognized as the potential solids, controlling the 

leaching of Cu at pH higher than 10 (Fig. 2.9b) while CuCO3 and Cu(OH)2 likely controlled the 

solubility of Cu at pH between 7 and 10. Fruchter et al. (1990) concluded that tenorite is the most 

probable solubility controlling phase for Cu2+ leaching among other Cu minerals commonly 

present in near surface geological conditions. However, undersaturation of Cu was observed at 

higher pH indicating the effect of adsorption mechanisms (Theis and Wirth 1977). Additionally, 

at acidic pH conditions, Cu2+ leaching was found to be adsorption controlled.  

Geochemical modeling indicates that, leached Fe3+ concentrations were mostly controlled 

by the Fe-hydroxides such as ferrihydrite (Fe(OH)3) and goethite (α-FeO(OH)) (Fig. 2.9c). 

Garavaglia and Caramuscio (1994) reported that leaching of Fe3+ from fly ashes is controlled by 

ferrihydrite. Hematite (Fe2O3), a primary mineral of iron in fly ash was also predicted by 

MINTEQA2. According to Rai (1987) the leaching of Fe3+ in long term and short-term leaching 

experiments is controlled by the dissolution and precipitation of both Fe oxide and hydroxide 

minerals. Patel and Devatha (2019) who studied biomedical ash for iron also identified ferrihydrite, 

goethite and hematite as the solubility controlling minerals for Fe. Oversaturation of Fe3+ was 

observed which could be due to smaller crystal sizes of iron minerals, resulting in an increase in 

the solubility product constant (Ksp). The Ksp of the iron minerals could increase by several orders 

of magnitude due to decreasing crystal size (Schwertmann 1991). Komonweeraket et al. (2015b) 

also reported the oversaturation of Fe3+ in the pH range of 5 to 12 from soil-fly ash mixtures. 
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Additionally, as seen from the Fig. 2.9d, SO42- ion activities were controlled by both 

gypsum (CaSO4·2H2O) and anhydrite (CaSO4). It is well known that fly ashes and slag are rich in 

gypsum and anhydrite, and hence leach sulfate in considerable amounts (Zhang et al. 2016). After 

investigating the leaching of sulfate from recycled concrete aggregate, Abbaspour et al. (2016) 

also concluded that leaching of SO42- is controlled by gypsum rather than the ettringite. However, 

oversaturation with respect to gypsum and anhydrite was observed in a few cases (typically for 

slag blends), where epsomite (MgSO4·7H2O) might have controlled the solubility of sulfate.  

2.7 Conclusions 

A series of SPLP, WLT and TCLP tests were conducted to explore the leaching behavior 

of Cr, Cu, Fe and S from Type I/II cement activated Class C fly ash, Class F fly ash and slag 

stabilized Iowa loess soil. The leaching potential of the elements at acidic, neutral and basic 

conditions were also evaluated. Leaching controlling mechanisms were studied by implementing 

the geochemical modeling program MINTEQA2. Some of the salient findings of this study are 

summarized below: 

• An increase in cement content increased the leached concentrations of Cr, Cu and S, 

while the Fe concentrations decreased with the increase in cement content. 

• Aqueous concentrations of the elements increased when the fly ash or slag content was 

increased from 0 to 10%. Further increases in addition rates did not influence the 

leaching of elements significantly.  

• Cr, Cu and S concentrations were the highest in TCLP, intermediate in WLT and the 

lowest in SPLP effluents. Comparable leachability of S was observed in WLT and 

SPLP solutions. The highest concentrations of Fe were observed in WLT and were the 

lowest in TCLP leachates.  
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• Regardless the test type, additions of metal sources did not impact the leachate 

concentrations of metals from cement activated soil-fly ash and soil-slag mixtures. 

However, sulfur concentrations tended to increase with the increase in total metal 

content in materials.  

• Leached concentrations of Cr, Cu, Fe and S were the highest in acidic conditions. Cr 

and Cu concentrations gradually decreased in both neutral and basic pH. Fe 

concentrations dropped sharply in neutral pH and remained low throughout the basic 

conditions. Small variations in S concentrations were observed in both acidic and 

neutral pH but decreased rapidly in basic environments.  

• pH played an important role on the leaching behavior of the elements. Cr and Cu 

showed amphoteric leaching behaviors, whereas Fe and S followed cationic leaching 

patterns.  

• The dominant oxidation states of Cr, Cu, Fe and S were determined as Cr3+, Cu2+, Fe3+ 

and S6+ (as SO42-), respectively. Under natural pH conditions, Cr concentrations 

exceeded the EPA specified MCL for drinking water. However, previous studies 

identified trivalent Cr (III) to be less detrimental compared to Cr (VI) for human health. 

• Despite of the differences in fly ashes, slag, cement and soil compositions, similarities 

in leaching behavior of elements were observed during geochemical modelling 

analyses. Resemblances were mostly due to the similar leaching regulatory factors and 

controlling mechanisms.  

• Dissolution and precipitation of oxide and hydroxide minerals were identified as the 

major leaching controlling mechanism of the elements. Amorphous Cr(OH)3 and 

eskolaite; tenorite and Cu(OH)2; ferrihydrite, goethite and hematite; gypsum and 
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anhydrite; were determined to be the primary minerals controlling the leaching of Cr, 

Cu, Fe and S, respectively. 

• The leaching of the elements from cement activated fly ash and slag treated soils were 

effected by both cement and fly ash/slag addition rates. Presence of cement as an 

activator influenced the material pH, and hence, the leaching characteristics of the 

elements. Though the effluent concentrations of Cr exceeded the EPA specified MCL, 

the use of fly ash and slag with cement in soil stabilization could be environmentally 

safe, since the Cr was found to be in Cr(III) oxidation state which is nontoxic.  
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2.9 Tables and Figures 

Table 2.1 Chemical composition and total metal content of the materials  

Chemical Composition* C FA F FA Cement Slag Soil 
CaO (%) 25.9 11.8 64 39.8 5.2 
SiO2 (%) 37.6 56.3 20 35.7 67.7 
Al2O3 (%) 18 18.6 4.4 9.9 9.6 
Fe2O3 (%) 5.9 5.5 3 0.6 3.3 
SiO2 + Al2O3 + Fe2O3 (%) 61.5 80.4 27.4 46.2 80.6 
Loss on Ignition, LOI (%) 0.24 0.14 2.45 N/A 6.91 
Moisture Content (%) 0.05 0.03 N/A 0.07 1.34 
SO3, max % 1.2 0.4 2.9 1.1 0.03 
Classification  Class Ca Class Fa Type I/IIb - MLc, A-4d 
Total Metal Analysis (mg/kg) **      
Chromium (Cr) 70.3 69.3 35 35.3 29.6 
Copper (Cu) 148.1 63.7 27 19.8 17.7 
Iron (Fe) 34348 21686 10476 2289 13370 
Sulfur (S) 9103 3176 18200 12600 916 

Note: *X-ray fluorescence spectrometry (XRF); FA: Fly ash; N/A: Not available; aASTM C618; bASTM 
C150/C150M; Hyphen: not applicable; cASTM D2487; dAASHTO classification; **U.S. EPA Method 3050B 
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Table 2.2 Composition of the mixtures along with optimum moisture content, maximum dry density and elemental concentrations 

Sample Name 
FA or Slag 
Content 
(%) 

Cement 
Content 
(%) 

Optimum 
moisture, wo 
(%) 

Max. Dry 
density, 𝜸𝜸d 
(kN/m3) 

Cr (mg/kg) Cu (mg/kg) Fe (mg/kg) S (mg/kg) 

Loess Soil 0 0 16.2 16.7 29.63 17.66 13370 916 
10CFA3PC 10 3 18.8 16.6 33.35 29.49 15150 2100 
10CFA6PC 10 6 17 16.6 33.38 29.42 15029 2516 
20CFA6PC 20 6 14.5 17 36.32 38.84 16562 3039 
40CFA6PC 40 6 14 16.7 40.97 53.81 18999 3870 
10FFA3PC 10 3 17.5 16.5 33.26 22.02 14029 1575 
10FFA6PC 10 6 18 16.6 33.3 22.15 13937 2005 
20FFA6PC 20 6 17 16.8 36.16 25.44 14552 2098 
40FFA6PC 40 6 15.2 17 40.7 30.68 15529 2246 
10BFS3PC 10 3 18.5 16.3 30.25 18.13 12313 2409 
10BFS6PC 10 6 18 16.6 30.37 18.36 12265 2818 
20BFS6PC 20 6 17 16.7 30.76 18.48 11473 3594 
40BFS6PC 40 6 18.7 16.8 31.38 18.66 10215 4828 

Note: FA: Fly ash; CFA: Class C fly ash; FFA: Class F fly ash; BFS: Blast-furnace steel slag; PC: Type I/II Portland cement; 10CFA3PC: 10% Class C fly ash + 
3% Type I/II Portland cement blend 
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Table 2.3 Required amount of acid/base added for a target pH in pH-dependent leach tests for cement activated fly ash and slag 
treated mixtures 

Mixture ID 
 Target pH 2  Target pH 7 

 

Target pH 13 
 Acid Added* 

(meq/g) Final pH 
 Acid Added* 

(meq/g) Final pH 
 Base Added* 

(meq/g) Final pH 

Loess Soil  3.07 1.91  0.19 7.37  -1.32 13.08 
C FA  18.96 2.01  6 6.87  -1.06 12.93 
F FA  7.49 1.83  0.92 6.83  -1.26 12.99 
Slag  20 3.2  13.65 6.74  -1.32 13.11 
Cement  20 4.51  19.11 7.49  -1.11 13.11 
10CFA3PC  4.9 1.79  1.4 6.96  -1.06 12.99 
10CFA6PC  5.57 1.69  1.44 8.02  -1.28 12.99 
20CFA6PC  6.62 1.8  1.97 7.23  -1.26 13 
40CFA6PC  8.5 1.71  2.29 7.22  -1.13 12.98 
10FFA3PC  3.83 1.77  0.64 6.82  -1.39 13.04 
10FFA6PC  4.42 1.87  1.5 7.06  -1.13 12.98 
20FFA6PC  4.73 1.81  1.51 6.9  -1.49 13.06 
40FFA6PC  5 2.17  1.33 7.1  -1.25 13 
10BFS3PC  5.59 1.53  2.08 6.94  -1.41 13.12 
10BFS6PC  5.73 2.69  2.46 6.98  -1.38 13.1 
20BFS6PC  9.36 1.67  3.34 6.73  -1.17 13.03 
40BFS6PC  10.15 2.19  4.01 6.83  -1.14 13.03 

Note: *Dry weight basis; FA: Fly ash; CFA: Class C fly ash; FFA: Class F fly ash; BFS: Blast-furnace steel slag; PC: Type I/II Portland cement; 10CFA3PC: 10% 
Class C fly ash + 3% Type I/II Portland cement blend
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Table 2.4 pH of the cement activated soil-fly ash and soil-slag mixtures in different test 
methods and pH conditions 

Mixture ID 
pH 

WLT TCLP SPLP Acidic 
Condition 

Neutral 
Condition 

Basic 
Condition 

Loess Soil 8.57 6.46 9.3 1.91 7.37 13.08 
C FA 12 11.41 11.92 2.01 6.87 12.93 
F FA 11.64 6.69 11.71 1.83 6.83 12.99 
Slag 11.6 9.93 11.68 3.2 6.74 13.11 
Cement 12.39 12.6 12.51 4.51 7.49 13.11 
10CFA3PC 11.79 8.88 11.82 1.79 6.96 12.99 
10CFA6PC 11.92 10.62 12.02 1.69 8.02 12.99 
20CFA6PC 11.95 11.16 12.01 1.8 7.23 13 
40CFA6PC 11.97 11.21 12.03 1.71 7.22 12.98 
10FFA3PC 11.75 7.92 11.78 1.77 6.83 13.04 
10FFA6PC 11.98 9.08 12.08 1.87 7.06 12.98 
20FFA6PC 11.98 10.65 12.08 1.81 6.9 13.06 
40FFA6PC 12.01 10.34 12.02 2.17 7.1 13 
10BFS3PC 11.83 9.88 11.94 1.53 6.94 13.12 
10BFS6PC 12.01 11.18 12.11 2.69 6.98 13.1 
20BFS6PC 12.02 11.31 12.11 1.67 6.73 13.03 
40BFS6PC 12.03 11.41 12.14 2.19 6.83 13.03 

Note: FA: Fly ash; CFA: Class C fly ash; FFA: Class F fly ash; BFS: Blast-furnace steel slag; PC: Type I/II Portland 
cement; 10CFA3PC: 10% Class C fly ash + 3% Type I/II Portland cement blend 
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Figure 2.1 Effect of cement content on the leached concentrations of (a) Cr, (b) Cu, (c) Fe, and 
(d) S in SPLP effluent. Note: 0% corresponds to soil only; FA: Fly ash 

  

0

100

200

300

400

500

0 2 4 6

C
r C

on
ce

nt
ra

tio
n 

(µ
g/

L)

Cement Content (%)

(a)
10% C FA

10% F FA

10% Slag

100% Cement

0

25

50

75

100

125

0 2 4 6

C
u 

C
on

ce
nt

ra
tio

n 
(µ

g/
L)

Cement Content (%)

(b)
10% C FA

10% F FA

10% Slag 100% Cement

0

100

200

300

400

500

0 2 4 6

Fe
 C

on
ce

nt
ra

tio
n 

(µ
g/

L)

Cement Content (%)

(c)
10% C FA

10% F FA

10% Slag
100% Cement

0

40

80

120

160

200

0 2 4 6

S 
C

on
ce

nt
ra

tio
n 

(m
g/

L)

Cement Content (%)

(d)

10% C FA

10% F FA

10% Slag

100% Cement



www.manaraa.com

35 
 

 
 

  

  

Figure 2.2 Effluent concentrations of (a) Cr, (b) Cu, (c) Fe, and (d) S as a function of fly ash or 
slag addition rate in SPLP effluent. Note: In addition to fly ash or slag content, mixtures were 

prepared with 6% type I/II cement. 0% and 100% correspond to soil, and FA (or slag) only 
samples; FA: Fly ash
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Figure 2.3 Method comparisons of Cr and Cu concentrations from cement activated soil-fly ash and soil–slag mixtures  
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Figure 2.4 Method comparisons of S and Fe concentrations from cement activated soil-fly ash and soil–slag mixtures 
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Figure 2.5 Effluent concentrations of (a) Cr, (b) Cu, (c) Fe, and (d) S from WLT, TCLP and 
SPLP leach tests as the function of total metal content of the soil-fly ash-cement and soil-slag-

cement mixtures 

0.1

1

10

0 20 40 60 80

Le
ac

he
d 

M
et

al
 C

on
te

nt
 (m

g/
kg

)

Total Metal Content (mg/kg)

(a) Cr

WLT
TCLP
SPLP

0.1

1

10

0 50 100 150 200

Le
ac

he
d 

M
et

al
 C

on
te

nt
 (m

g/
kg

)

Total Metal Content (mg/kg)

(b) Cu

WLT
TCLP
SPLP

0.1

1

10

0 10000 20000 30000 40000

Le
ac

he
d 

M
et

al
 C

on
te

nt
 (m

g/
kg

)

Total Metal Content (mg/kg)

(c) Fe

WLT
TCLP
SPLP

1

10

100

1000

10000

0 5000 10000 15000 20000

Le
ac

he
d 

M
et

al
 C

on
te

nt
 (m

g/
kg

)

Total Metal Content (mg/kg)

(d) S

WLT
TCLP
SPLP



www.manaraa.com

 

 
 

39 

 

 

Figure 2.6 Leaching of Cr and Cu at acidic, neutral and basic conditions. Note: 10CFA3PC: 10% Class C fly ash+3% cement mixture 
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Figure 2.7 Leaching of Fe and S at acidic, neutral and basic conditions. Note: 10CFA3PC: 10% Class C fly ash+3% cement mixture
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Figure 2.8 Effect of pH on the leached concentrations of (a) Cr, (b) Cu, (c) Fe, and (d) S from 
cement activated fly ash and slag treated mixtures 
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Figure 2.9 Log activity of (a) Cr3+, (b) Cu2+, (c) Fe3+, and (d) SO42- in the effluent of cement 
activated fly ash and slag treated mixtures 
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CHAPTER 3.    LEACHING BEHAVIOR OF ALUMINUM, COPPER, IRON AND ZINC 
FROM FLY ASH AND SLAG STABILIZED SOILS 

A paper submitted to Waste Management 

Masrur Mahedi, Bora Cetin and Asli Y. Dayioglu 

3.1 Abstract 

The use of industrial by-products such as fly ash and slag have become very prevalent in 

soil stabilization owing to its suitable physical and mechanical properties, and economical 

advantages. However, fly ash and slag have been identified as the potential source of toxic 

substances, and may pose environmental risk by leaching heavy and trace metals into soil, surface 

and groundwater. Toxicity characteristic leaching procedure (TCLP) tests were conducted to 

investigate the environmental hazards associated with the leaching of Aluminum (Al), Copper 

(Cu), Iron (Fe) and Zinc (Zn) from fly ashes, slag, type I/II cement and cement activated fly ash 

and slag stabilized soils. Sulfate (SO4), dissolved inorganic carbon (DIC) and dissolved organic 

carbon (DOC) concentrations were also quantified to evaluate their influence on metal leaching. 

To understand the effect of pH on the leaching behavior, pH-dependent leach tests were conducted 

at the pH ranges of 2 to 14. An increase in fly ash or slag content might not necessarily increase 

the effluent metal concentrations. Al, Cu, Zn and DOC followed an amphoteric leaching pattern 

where concentrations increased in both acidic and basic conditions. In contrast, maximum DIC 

concentrations occurred at neutral or near neutral pH values. Fe and SO4 showed cationic leaching 

behavior where concentrations decreased with an increase in effluent pH. Additionally, dominant 

oxidation states of the metals and their leaching controlling mechanisms were identified by 

implementing the geochemical modeling program Visual MINTEQ. The geochemical analyses 

indicated that the solubility of Al3+ and Fe3+ were controlled by precipitation/dissolution reactions 
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of oxide/hydroxide minerals at all pH values. Leaching of Cu2+ was only solubility controlled at 

pH higher than 7, whereas Zn2+ leaching was solubility controlled in the pH range of 8 to 12.  

Keywords: Leaching, metals, pH-dependent, fly ash, slag, geochemical modeling 

3.2 Introduction 

Fly ash is a coal combustion byproduct from coal power plants, collected from exhaust gas 

either by mechanical or electrostatic procedures (Wen et al., 2011). According to the U.S. Energy 

Information Administration, about 40% of the electricity generated in the United States in 2016 

was reliant on coal combustion (EIA, 2018). As of 2016, more than 37 million tons of fly ashes 

were produced and approximately 60% of them were recycled (ACAA, 2017). Some of these fly 

ashes have cementitious properties (e.g., Class C fly ash) derived from higher amount of calcium 

oxides (CaO), while others (e.g., Class F fly ash, high carbon fly ash) are rich in silica (SiO2), 

alumina (Al2O3) and iron oxides (Fe2O3) which can react with an activator such as cement and 

lime to produce additional cementitious compounds (Cetin et al., 2010; Thomas, 2007). Similarly, 

steel slag is the non-metallic byproduct generated in different stages of steel production (Engström 

et al., 2013; Yin et al., 2018), mostly consisting silicates and aluminosilicates of calcium and other 

bases, having the potential to be a functioning substitute of cement clinkers (Shi, 2004). Therefore, 

soil stabilization with fly ash and slag have emerged as an economical and practical alternative to 

the conventional chemical stabilization methods. However, the use of fly ash and slag in 

construction purposes may pose potential environmental hazards as they contain heavy and trace 

metals (Bin-Shafique et al., 2006; Cetin et al., 2014; Dayioglu et al., 2014; Langová and Matýsek, 

2010). On the other hand, Mahedi et al. (2018) showed that fly ashes and slags are more efficient 

to improve the soil strength when they are mixed with cement. In addition to the strength increase, 

it is expected that cement inclusion would alter the leaching behavior of metals from these soil-fly 

ash and soil-slag mixtures. However, this has not been quantified.  



www.manaraa.com

45 

 
 

In recent years, the leaching of metals from fly ashes and slags has received significant 

attentions. Several studies demonstrated the influence of fly ash content, fly ash type and soil type 

on the leaching potential of metals (Cetin et al., 2013; Cetin and Aydilek, 2013; Gwenzi and 

Mupatsi, 2016; Kogbara et al., 2014, 2013; Tsiridis et al., 2015; Zhang et al., 2016). The leaching 

of metals with slag aging (Gomes and Pinto, 2006), carbonation sequestration (Huijgen and 

Comans, 2006), leaching kinetics (De Windt et al., 2011), environmental and geotechnical 

assessment (Sas et al., 2015), pH dependent leaching (Cappuyns et al., 2014) are some significant 

and recent works on the leaching behavior of slag. However, limited works have been reported on 

the leaching characterization of metals from cement activated fly ash and slag stabilized soils. 

None of the previous studies has investigated the leaching properties of cement activated fly ash 

and slag stabilized soils as a function of fly ash/slag/cement content and pH dependence, though 

mineralogy of these additives affects the particle surface charge, buffering capacity, and hence the 

leaching behaviors of metals (Dayioglu et al., 2018; Komonweeraket et al., 2015b). An assessment 

regarding the influence of pH on the leaching behavior of metals is vitally important, since pH 

plays an important role in controlling the leaching of both organic and inorganic substances 

(Fruchter et al., 1990; Komonweeraket et al., 2015b, 2015a; Mudd et al., 2004). Leaching behavior 

of metals is reflected by effluent pH, and an investigation involving pH would offers a better 

understanding on the environmental impacts of soils mixed with fly ash and slag. Moreover, 

inclusion of an activator (e.g. cement, lime) in soil-fly ash and soil-slag mixtures contributes to the 

basic effluent pH significantly. Higher effluent pH may induce leaching of amphoteric metals such 

as Aluminum (Al), Copper (Cu) and Zinc (Zn) from fly ash and slag stabilized soils. Furthermore, 

leaching controlling mechanisms related to the effluent pH from soil-fly ash-cement and soil-slag-

cement mixtures have not yet been investigated. Leaching mechanisms are vitally important in 
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predicting the metal concentrations in leachate from cement activated fly ash and slag stabilized 

soils. Therefore, the knowledge on leaching mechanisms is at prime position in quantifying the 

risks associated with the use of fly ash-cement and slag-cement in soil stabilization.  

The objectives of this study are to (1) investigate the metal leaching behavior from 

commonly used fly ashes and slag in geotechnical purposes, (2) access the effects of fly ash, slag 

and cement contents on the leaching characteristics, (3) examine the influence of pH on the 

leaching behavior, (4) identify the mechanisms controlling the release of metals and minerals, and 

(5) determine the effect of stabilizers’ type on metal leaching potentials and mechanisms. Two 

different fly ashes (Class C and F) and blast-furnace steel slag were selected for laboratory 

evaluation purposes. Type I/II cement was considered as an activator. A series of pH dependent 

leach test was performed to investigate the leaching behavior of Aluminum (Al), Copper (Cu), 

Iron (Fe) and Zinc (Zn). These metals were selected as the leaching characteristics of the 

designated metals are highly pH sensitive (Fruchter et al., 1990; Mudd et al., 2004). Toxicity 

characteristic leaching procedure (TCLP) leach test was implemented to relate the leached 

concentrations of the selected metals with regulatory limits defined by the U.S. EPA. In addition, 

leached concentrations of sulfate (SO4), dissolved inorganic carbon (DIC) and dissolve organic 

carbon (DOC) were quantified due to their influence on metal leaching behavior (van der Sloot et 

al., 2017). Furthermore, geochemical modeling program MINTEQ was implemented to identify 

the leaching controlling mechanisms and determine the dominant oxidation states of metals in the 

effluents from fly ash-cement and slag-cement treated soils.  

3.3 Materials 

Iowa loess soil was stabilized with fly ash-cement and ground granulated blast furnace 

slag-cement grout. Loess soil was collected from the loess hill areas of Monona County, Iowa. 

ASTM C136/C136M was followed for sieve analysis of the soil. Approximately 82% of the soil 
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consists of fine particles (< 0.075 mm), while rest of it is predominantly sand size particles. The 

Liquid Limit (LL) and Plasticity Index (PI) determined in accordance to ASTM D4318 were found 

to be 24 and 4, respectively. The soil was classified as low plasticity silt (ML) according to Unified 

Soil Classification System (USCS). The specific gravity (Gs) of the soil was determined to be 2.74 

following the standard method designated by ASTM D854. 

Two different fly ashes (Class C and Class F) and a ground granulated blast furnace slag 

were used in the current study. As described in previous studies (Cetin et al., 2010; Mahedi et al., 

2018) fly ashes and slag worked more efficiently when it was used with a calcium based activator. 

Therefore, Type I/II Portland cement was considered to initiate the pozzolanic reactions. The 

chemical compositions and the total elemental analysis of the materials used in this study are 

summarized in Table 3.1 and Table 3.2, respectively.  For convenience, Class C fly ash and Class 

F fly ash are designated herein as C FA and F FA, correspondingly. The CaO content of the slag 

was 39.8% by weight indicating that it had high soil stabilization potential. Loess soil was found 

to be calcareous with the presence of Al2O3 (9.6%) and CaO (5.2%). X-ray diffraction analysis 

(not included for brevity) revealed the presence of albite (NaAlSi3O8), calcite (CaCO3) and 

dolomite (CaMg(CO3)2) in loess soil. The pH of the stabilizers ranged from 11.6 to 12.7, while the 

pH of Loess soil was slightly alkaline (pH = 8.57). Both the fly ashes and slag primarily consisted 

of silt-sized particles with fines ranging from 73-91% (passing U.S. No. 200 sieve size) (Table 

3.3). The Gs of the C FA was the highest (2.7), whereas it was the lowest for the slag (2.55) (Table 

3.3).  

3.4 Methods 

3.4.1 Sample Preparation 

The fly ash/slag and cement percentages for the mixtures were selected based on the 

strength and stiffness requirements determined by previous studies (Cetin et al., 2010; Mahedi et 
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al., 2018). A summary of the batches is provided in Table 3.4. Soil was mixed with 10%, 20%, 

and 40% fly ashes and slag by weight. The lower percentages (10% and 20%) of fly ash and slag 

are within the typical application range for soil stabilization. Cement was added as an activator at 

rates of 3% and 6%. All mixture proportions were measured gravimetrically and mixed thoroughly 

at their corresponding optimum moisture content (OMC) using nano-pure water. OMC and 

maximum dry density (γdmax) of soil and the mixtures were pre-determined by implementing 

standard compaction effort as per ASTM D698. As reported in Table 3.4, the γdmax of the mixtures 

were within the range of 16.3 to 17 kN/m3, while the optimum moisture content varied between 

14 to 18.8%. Mixtures were then cured in plastic bags for 7 days at 19 °C ± 2 and 95 % ± 5 relative 

humidity. After curing, samples were crushed and sieved through U.S. No. 10 sieve for leaching 

tests. 

3.4.2 Toxicity Characteristic Leaching Procedure (TCLP) 

Toxicity characteristic leaching procedure (TCLP) designated by U.S. EPA method 1311 

was performed on soil, fly ashes, slag and soil-fly ash/slag-cement mixtures. The extraction 

solution for TCLP was prepared by adding 5.7 mL glacial acetic acid (CH3COOH) and 64.3 mL 1 

N sodium hydroxide (NaOH) into 500 mL nano-pure water. The solution was then diluted to 1 L, 

yielding a pH of 4.93±0.05. Specimens were prepared at a constant liquid-to-solid ratio (L:S) of 

20:1. 200 mL of extraction fluid was added to 10 g of soil mixture in a 1-liter high-density 

polyethylene (HDPE) bottle. The samples were rotated for 18±2 hours at a rotation rate of 28 rpm 

as described in Cetin and Aydilek (2013). After rotation, solution pH and conductivity were 

measured. Finally, samples were vacuum filtered using 0.7-μm borosilicate glass fiber filters. The 

filtered samples were divided into two aliquots: one non-acidified, and the other acidified to a pH 

< 2 with 10% trace metal grade nitric acid (HNO3). Both aliquots were stored in refrigerator at 

temperature lower than 4 ºC for further analyses.  
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3.4.3 pH Dependent Leach Test  

Standard test method designated by U.S. EPA Method 1313 was followed to evaluate the 

effect of pH on the leaching behavior of metals and minerals. A liquid-to-solid ratio (L:S) of 10:1 

was utilized with 40 g sample, and the samples were prepared at nine target pH values of 2, 4, 5.5, 

7, 8, 9, 10.5, 12 and 13 (±0.5). The pH of the solutions was adjusted with either 1 N potassium 

hydroxide (KOH) or 2 N trace metal grade HNO3. The appropriate amount of acid/base and water 

required for a target pH were pre-determined by evaluating the acid neutralizing capacity (ANC) 

of the mixtures. The acid neutralizing capacity was assessed by adding various amount of 1 N 

KOH or 2 N HNO3 into water. A liquid-to-solid ratio (L:S) of 10:1 was implemented and the 

solution was rotated for 48±2 hours at a rotation rate of 28 rpm. After rotation, pH and electric 

conductivity of the solutions were measured. The pH dependent leach test samples were also 

rotated at 28 rpm for 48±2 hours. After measuring the pH and conductivity, samples were pressure 

filtered using 60-mL plastic syringes through 25-mm diameter, 0.2-μm pore size membrane filters 

fitted in 25-mm Easy Pressure syringe filter holders. All the syringes, filter holders and centrifuged 

tubes were acid-washed and rinsed with nano-pure water prior to use. The filtered extract was 

acidified with 10% trace metal grade nitric acid (HNO3) to the pH lower than 2 and stored in 

refrigerator at temperature lower than 4 ºC. Another non-acidified aliquot of sample was stored for 

DIC, DOC and SO4 measurements. 

3.4.4 Measurement Methods 

The elemental analysis of the samples was performed by inductively coupled plasma 

optical emission spectroscopy (ICP-OES). Known concentrations of commercially produced 

multi-element standard solutions were used to calibrate the ICP. The calibration curves were 

verified at every 9 samples and at the end of analysis sessions by running blank solutions and 

checking standards. The minimum detection limits (MDLs) of Al, Cu, Fe and Zn were 2.5 µg/L, 
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1.5 µg/L, 3.2 µg/L and 1 µg/L, respectively. Dissolved inorganic and organic carbon analyses were 

measured by the Shimadzu TOC-V analyzer. The instrument was calibrated by standard sodium 

bicarbonate (NaHCO3) and sodium carbonate (Na2CO3) solutions for inorganic carbon, and 

potassium hydrogen phthalate (C8H5KO4) solutions for organic carbon measurements. Inorganic 

carbon was converted to carbon dioxide (CO2) in IC reactor by acidifying the samples with 17% 

phosphoric acid (H3PO4) solution. Organic carbon was also converted to CO2 separately by the 

persulfate oxidizer solution and heating at 680 ºC. Finally, DIC and DOC concentrations were 

measured by quantifying CO2 in a non-dispersive infrared (NDIR) gas analyzer. Sulfate 

measurements were carried out by the SEAL AQ2 analyzer, implementing the U.S. EPA method 

no: EPA-123-A Rev. 5. The detection limits for the sulfate was 1 mg SO4/L. Under controlled 

conditions, dissolved sulfates were converted to barium sulfate (BaSO4) suspension and the 

resulting turbidity was determined by a filter photometer at 405 nm. A new calibration curve was 

prepared for every analysis session by the standard anhydrous sodium sulfate (Na2SO4) solution 

which provided 1000 mg/L aqueous concentration of sulfates.  

3.5 Results 

3.5.1 Toxicity Characteristic Leaching Procedure (TCLP) 

3.5.1.1 pH and electric conductivity (EC) 

Fig. 3.1a shows the change of effluent pH (in TCLP) of the mixtures with fly ash and slag 

content when mixed with 6% cement by weight. Effluent pH greatly influences the leaching 

behavior of metals and is considered as an important safety criterion for soil stabilization (Daniels 

and Das, 2006). Fig. 3.1b indicates that the mixtures prepared with slag have the highest pH values 

whereas the pH of the specimens prepared with Class F fly ash were the lowest. It is well known 

that, effluent pH increases with the increase in CaO and MgO content of materials (Bin-Shafique 

et al., 2006; Quina et al., 2009). Table 3.1 indicates that CaO content is higher for slag and Class 
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C fly ash (39.8, 25.9; respectively) compared to the Class F fly ash (11.8%) used in the current 

study. Effluent pH of mixtures increased with an increase in fly ash/slag content (except the one 

prepared with 40% Class F fly ash), though the increase rates were insignificant beyond 10%. In 

case of 40% F fly ash mixture, the effluent pH (10.34) was slightly lower than that of 20% F fly 

ash blend (10.65). Izquierdo et al. (2011) concluded that effluent pH increased when CaO/Ca(OH)2 

ratio within the soil matrix was higher. Hydrated calcium silicate (C-S-H) produced by pozzolanic 

reactions may have reduced the free lime content of 40% F fly ash mixture and decreased the 

solution pH eventually. Moreover, Class F fly ash and slag mixtures have higher pH values 

compared to Class F fly ash alone and slag alone, proving the greater influence of cement (6% by 

weight) on the pH controlling mechanism. CaO content of Class F fly ash alone seemed to be 

inadequate to neutralize the free protons in TCLP extraction solution. For pure slag, effluent pH 

was lower due to slow dissolution rate of primary slag minerals (merwinite, akermanite and 

gehlenite) at alkaline conditions (Engström et al., 2013). Additionally, Fig. 3.1b shows that the 

effluent pH of the mixtures increases significantly with an increase in cement content, reflecting 

higher discharge of free lime and portlandite from type I/II cement. The pH of 100% cement in 

TCLP effluent solution was found to be the highest (12.6).  

Impacts of fly ash/slag content and cement content on electrical conductivity (EC) of 

mixtures are presented in Figs. 3.1c and 1d, respectively. EC is associated with cation and anion 

concentrations in the solution which provides an estimation of effluent ionic strength (Gräfe et al., 

2009). Higher ionic strength may induce additional metal leaching by decreasing surface negativity 

of soil mixtures through electrostatic effects (Sparks, 2003). Cetin et al. (2012) observed enhanced 

leaching of metals at increased ionic strengths. Fig. 3.1c shows that EC of Class C and slag 

mixtures increases with an increase in Class C fly ash and slag content. On the other hand, such 
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trend was not observed for the mixtures prepared with Class F fly ash. EC of soil-Class F fly ash-

cement mixtures increased initially (10%), but remained almost unaffected at addition rates beyond 

10% by weight. Class F fly ash alone had the lowest EC in all materials including the soil alone. 

Fig. 3.1d shows that EC of mixtures are not affected noticeably with an increase in cement content 

from 3% to 6% by weight. 

3.5.1.2 Effect of fly ash and slag content on the leaching of elements 

Fig. 3.2 shows the variation of TCLP effluent concentrations of the elements (Al, Cu, Fe, 

Zn, SO4 and DIC) with fly ash and slag content. Metals were analyzed by compiling leached 

concentrations from soil, fly ashes, slag and 6% cement activated fly ash and slag treated soil 

mixtures. As seen from Fig. 3.2a, Al concentrations increase with the increase in fly ash and slag 

content. Murarka et al. (1991) claimed that Al concentration in aqueous solution is controlled by 

the dissolution and precipitation of aluminum (hydro) oxide. Free Al3+ starts to precipitate as 

gibbsite and Al(OH)3 in the pH range of 6 to 9 (Astrup et al., 2006). With the increase in fly ash 

or slag content, pH raised beyond this range (Figs. 3.1a and 3.1b) and increased the leached 

concentrations of Al. Class F fly ash blends leached the lowest amount of Al. Leached Al 

concentrations from the mixtures were significantly lower than those observed in fly ashes only. 

Al became immobilized by incorporating in cement hydrates. As seen in Fig. 3.2a, 100% Class F 

fly ash leached higher amount of Al, though the solution pH (6.69) was low. At this pH, Al(OH)2+ 

dominates as the pH is lower than the point of zero charge (PZC) of alumina (8.1) (Tombácz, 

2009). Al(OH)2+ may have complexed with acetate ligands and remained in the solution, which 

eventually increased the effluent concentrations of Al. For other mixtures, ligands were initially 

complexed with Ca2+ because of their higher CaO content, and greater reactivity of Ca2+ compared 

to Al3+ cations. It should be pointed out that in all cases, Al concentrations exceeded 0.2 mg/L 
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specified by U.S. EPA maximum contaminant level (MCL) for drinking water. However, cement 

treatment may considerably reduce Al leaching from fly ashes.  

The leached concentrations of Cu and Fe in TCLP extracts followed very similar leaching 

trends (Figs. 3.2b and 3.2c). Untreated loess soil leached higher amount of Cu and Fe than the soil-

fly ash-cement and soil-slag-cement mixtures. Aqueous concentrations of these metals fluctuated 

with fly ash or slag content. Yet, with few exceptions, Cu and Fe concentrations decreased with 

the increase in fly ash or slag content. Effluent pH mostly controls the leaching of these two metals. 

Komonweeraket et al. (2015b) claimed that Cu follows a cationic leaching pattern, where 

concentrations decrease with an increase in pH due to the precipitation of copper oxide (CuO) and 

hydroxide (Cu(OH)2) minerals. Fe also precipitates in neutral and alkaline conditions (pH > 6) 

forming insoluble cationic species (Goswami and Mahanta, 2007). Therefore, the soil-fly ash/slag-

cement mixtures leached less due to high alkaline pH conditions (pH > 12) than the loess soil 

which has a pH = 6.46. Furthermore, Class C fly ash alone leached lower amount of Cu and Fe 

compared to the soil-Class C fly ash mixtures, whereas the observed behavior was opposite for 

Class F fly ash and slag blends. Lower pH of 100% Class F fly ash and slag (6.69 and 9.93, 

respectively) compared to Class C fly ash (pH = 11.41) was the reason for the observed behavior. 

In addition, acidic nature of soil effluent (pH = 6.46) was identified as the potential reason of 

higher Cu and Fe leaching from untreated soil. However, in all cases, Cu and Fe concentrations 

were lower than the U.S. EPA specified MCLs for drinking waters (1.3 and 0.3 mg/L, 

respectively).  

Fig. 3.2d shows that Zn concentrations increase consistently with Class C fly ash content. 

Zn follows an amphoteric leaching pattern and the dissolution and/or precipitation of zincite and 

Zn(OH)2 control the aqueous concentrations of Zn (Murarka et al., 1991). Bestgen et al. (2016) 
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reported that the lowest concentrations of Zn occur at pH around 10.5. With the increase in fly ash 

content, solution pH of Class C fly ash mixtures raised to the range of 10.6 to 11.2 which caused 

an increase in Zn concentrations. For Class F fly ash mixtures, concentrations fluctuated depending 

on the effluent pH. In contrast, after an initial increase, Zn concentrations decreased with an 

increase in slag content, though the pH increased above 10.5. From elemental analysis, Zn content 

(Table 3.2) was the lowest for slag which may have resulted in lower leaching of Zn. Cetin et al. 

(2014) reported minor leaching of Zn at elevated pHs due to lower elemental concentrations.  

Sulfate concentrations also increased with fly ash content, whereas a decreasing trend was 

observed for slag mixtures with an initial increase at 10% addition rate (Fig. 3.2e). At higher pH 

levels (pH > 10.7), with the presence of free lime SO4 precipitates as ettringite (Gabrisová et al., 

1991). Higher CaO content (Table 3.1) of slag may have facilitated the formation and precipitation 

of ettringite which eventually reduced the effluent concentrations of SO4. Lower amount of CaO 

in fly ashes inhibited the formation of ettringite and therefore, higher amount of SO4 remained in 

the solutions. Moreover, oxyanions such as AsO43-, SeO3-2 may replace SO4 in ettringite and 

increased the aqueous concentrations (Zhang and Reardon, 2003). Yet, this claim cannot be 

verified as As and Se concentrations were not measured in the current study.  

DIC concentrations decreased significantly with an increase in fly ash or slag content (Fig. 

3.2f). DIC occurs mainly in three inorganic forms: dissolved carbon dioxide (CO2(aq)), bicaronate 

(HCO3-) and carbonate (CO32-) (Schulz et al., 2006). At alkaline conditions and with the presence 

of atmospheric CO2(g), carbonate (CO32-) predominates and precipitates as insoluble carbonates of 

divalent cations such as Ca2+, Cd2+, Mg2+, and Sr2+ (Langmuir, 1997; Stumm and Morgan, 1996). 

Komonweeraket et al. (2015a) reported the oversaturation and precipitation of calcite and/or 

aragonite (CaCO3) in soil-fly ash leachates at pH higher than 9. In this study, pH values of soil-fly 
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ash-cement and soil-slag-cement mixtures were very basic which resulted in reduction of DIC 

concentrations by inducing insoluble carbonate precipitations.  

3.5.1.3 Effect of cement content on the leaching of elements 

TCLP effluent concentrations of the elements with cement content are presented in Fig. 

3.3. Mixtures prepared with 10% fly ash or slag content, and varying dosages (3% and 6%) of 

cement were considered to evaluate the influence of cement on the leaching behaviors. As seen 

from Fig. 3.3, Al and SO4 concentrations increased with cement content. The rate of increases in 

concentrations of Al and SO4 were not linear, though the mass of metals in the mixtures increased 

linearly with cement content. The increase rates were greater when cement content was increased 

from 0% to 3% rather than the increase from 3% to 6%. Effluent concentrations of these ions were 

higher for 100% cement which was the most probable reason for higher concentrations at elevated 

cement content. For Fe and Zn, concentrations increased at the initial cement content (3%), but 

subsequently decreased at 6% addition rate. Cu concentrations monotonically decreased with an 

increase in cement content. Cu and Fe may have followed a cationic leaching pattern and 

concentrations decreased as the pH increased along with the increase in cement content 

(Komonweeraket et al., 2015b; Liu et al., 2008). Conversely, Zn shows amphoteric leaching 

pattern with minimum concentrations at pH around 10.5 (Bestgen et al., 2016). With an increase 

in cement content, pH increased to 10.5 which caused a reduction in leached Zn concentrations. 

Furthermore, Zn concentration was lower in 100% cement compared to the mixtures. In case of 

DIC, concentrations decreased with cement content due to the precipitation of divalent metal 

carbonates at alkaline conditions. 100% cement also had lower DIC as the cement pH was very 

alkaline (pH=12.6).   
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3.5.2 pH-dependent Leaching Behavior 

3.5.2.1 Acid neutralizing capacity (ANC)  

ANC of the mixtures along with loess soil, cement, fly ashes and slag are illustrated in Fig. 

3.4. Negative values in ANC curves indicate base addition in terms of meq/g weight of dry sample. 

As seen in Fig. 3.4a, loess soil showed very low neutralizing capacities (-0.315 to 0.19 meq/g soil) 

in the pH range of 12.4 to 7.4. Acid neutralizing capacities of Class F fly ash were almost identical 

to loess soil, with a large buffer zone at pH lower than 4. According to Zhang et al. (2016), the 

plateau indicates that, environmental conditions can affect the effluent pH of Class F fly ash. Class 

C fly ash also showed higher neutralizing capacities at pH < 4. Compared to Class F fly ash and 

soil, greater buffering capacities of Class C fly ash were observed throughout the whole pH range 

due to its higher CaO content (Table 3.1). Two different plateaus at pH values of 8.6 and 6.4 were 

identified in the ANC curve of Class C fly ash. Silicates and aluminosilicates have a buffering 

capacity at pH value of 8 which is the reason for the observed plateau at pH of 8.6 (Roy and 

Cartledge, 1997). Calcium carbonate, gypsum and gibbsite are most likely responsible for the 

plateau at pH around 6.4. These minerals have the buffering capacities in the pH range of 5 to 6 

(Chen et al., 2009). The variations in equilibrium pH were observed depending on the Ca-contents 

of the minerals (Giampaolo et al., 2002). 

Compared to the fly ashes, slag showed higher neutralizing capacities. A large buffer 

region from pH 9 to 6.7 was identified, which may have happened due to higher CaO and MgO 

contents of slag (Table 3.1). As expected, the strongest acid neutralizing capacities were observed 

for cement with three distinct plateaus ranging the pH of 13.1 to 12.3, 12.3 to 10.3 and 10.3 to 9.0 

(Fig. 3.4a). The first plateau was ascribed due to the presence of soluble portlandite along with Ca-

rich (Ca/Si = 1.8) calcium-silicate-hydrates (C-S-H) (Isenburg and Moore, 1992; Stronach and 

Glasser, 1997). The second plateau was associated with C-S-H of low Ca/Si ratio (<1.5) which 
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showed acid neutralizing capacities at pH around 10 (Stegemann and Buenfeld, 2002). The third 

plateau was due to MgO in dolomitic lime causing a pH detention within the pH range of 9 to 11 

(Fernández et al., 2003).  

Fig. 3.4 shows that acid neutralizing capacities of the mixtures are influenced by their soil, 

cement and fly ash or slag contents. For Class C fly ash and slag mixtures, acid neutralizing 

capacities fall between the neutralizing capacities of soil and 100% Class C fly ash or slag materials 

(Fig. 3.4b and 3.4d).  Buffering capacity of these mixtures increased with fly ash and slag content. 

The influences of cement on ANC curves were less pronounced. Higher CaO and MgO content 

(Table 3.1) of Class C fly ash and slag, and lower cement addition rates (3%-6%) validate the 

observed behavior. In contrast, soil-Class F fly ash mixtures have higher neutralizing capacities 

than those of soil and 100% Class F fly ash (Fig. 3.4c). This indicates larger influence of cement 

on the buffering capacities of Class F fly ash mixtures. Lower amount of CaO and MgO content 

(Table 3.1) in Class F fly ash and higher acid buffering capacity of cement is the reason for the 

observed inclination. Trivial improvement in buffering capacities with fly ash contents also 

justifies the aforementioned claim.  

3.5.2.2 pH dependent leaching patterns 

Fig. 3.5 shows the leached concentrations of Al from the mixtures and materials alone as a 

function of pH. Al showed amphoteric leaching pattern with minimum concentration at neutral 

pH, and maximum concentrations at acidic and basic conditions (Freire et al., 2015). In this study, 

minimum concentrations of Al were observed at somewhat alkaline environment. At neutral and 

slightly basic pHs (6-9), Al precipitates as amorphous Al(OH)3 which decreases Al concentrations 

in the effluent (Gitari et al., 2009). Fig. 3.5 also indicates that leached Al concentrations are higher 

in acidic conditions compared to the ones in alkaline conditions. Gibbsite and amorphous Al(OH)3 

controls the leaching of Al in acidic fly ash solutions, whereas boehmite [𝛾𝛾-AlO(OH)] controls Al 
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at alkaline conditions (Roy et al., 1984). However, for 100% cement (Fig. 3.5a), a decrease in Al 

concentration was observed at higher pH (pH > 12) which is consistent with the leachability of Si 

and other oxyanions, linked to the precipitation of ettringite (Cornelis et al., 2008). Moreover, as 

seen from Fig. 3.5d, leached Al concentrations were stable in a pH range of 5.5 to 11 for slag 

mixtures. Slower dissolution rates of Al bearing slag minerals such as gehlenite (Ca2Al2SiO7) and 

tricalcium aluminate (Ca3Al2O6) are the most probable reason of the observed leaching behavior 

for slag mixtures (Engström et al., 2013). Dudas (1981) also reported limited leachability of Al 

due to extremely slow dissolution rates of glassy matrix and crystalline aluminosilicate phases.  

The concentrations of Cu were the highest in acidic conditions which kept decreasing until 

the pH was around 12 (Fig. 3.6). A subsequent increase in Cu concentrations beyond the pH of 12 

indicated amphoteric leaching behavior of Cu. Chandler et al. (1997) reported mild amphoteric 

leaching of Cu from fly ashes and municipal solid waste incinerator residues. Fruchter et al. (1990) 

indicated that the release of Cu was solubility controlled and dependent on the 

dissolution/precipitation of CuO and Cu(OH)2. It is well known that CuO is an amphoteric oxide 

with higher solubility in both acidic and basic solutions. In addition, loess soil showed robust 

amphoteric leaching of Cu with minimum concentration at pH around 9.5. Cu solubility is also 

strongly influenced by the complexation with DOC (Dijkstra et al., 2008). Higher DOC 

concentrations in soil is the most probable reason for the strong amphoteric leaching pattern of Cu 

from soil only. In contrast, cationic leaching of Cu was observed for 100% cement (Fig. 3.6a). It 

is assumed that under alkaline conditions Cu is included in the precipitates such as calcite (CaCO3) 

and/or aragonite (CaCO3) and reduced in concentrations (Cetin et al., 2012; Komonweeraket et al., 

2015b).  
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The leachability of Fe sharply decreased towards slight acidic to neutral environments (pH 

≅ 5-7) and remained low throughout the remaining pH range (Fig. 3.7). It is well known that Fe 

is solubility controlled and dependent on the dissolution and precipitation of oxide and hydroxide 

minerals such as hematite (Fe2O3) and Fe(OH)3. With an increase in pH, Fe precipitated as 

amorphous oxyhydroxide (Warren and Dudas, 1989) which decreased solution Fe concentrations. 

For soil-Class F fly ash/slag-cement mixtures, an increase in Fe concentration was observed at 

extreme caustic conditions (pH ≥ 13). At extreme pH conditions (pH > 12), Fe concentrations may 

have increased due to the hydrolysis of Fe3+ in the form of Fe(OH)4- (Allanore et al., 2007).  

The leaching of Zn also presented amphoteric characteristics with higher concentrations in 

acidic conditions (pH < 4), followed by a rapid decrease in the pH range of 4 to 11 (Fig. 3.8). An 

elevated release of Zn at pH higher than 11 specified the expected U/V-shaped curve for Zn 

leaching (Bestgen et al., 2016; Du et al., 2018; Engelsen et al., 2010). Theis et al. (1982) has 

identified Zincite (ZnO) as the primary Zn containing mineral in fly ashes which controls the 

effluent Zn concentrations (Garavaglia and Caramuscio, 1994). The formation of anionic hydroxo-

complexes enhanced Zn concentrations in strong alkaline conditions (Izquierdo and Querol, 2012).  

As indicated in Fig. 3.9, SO4 concentrations remained almost unaffected across the pH 

range of 2 to 10.5, decreased sharply at pH values of 10.5 to 12, and remained constant beyond pH 

> 12. Similar leaching behavior of SO4 from fly ashes and soil-fly ash mixtures has also been 

recognized by Zhang et al. (2016) and De Gianfilippo et al. (2018). With the presence of sufficient 

lime (CaO), SO4 forms insoluble ettringite and precipitates when the pH rises above 10.7 

(Gabrisová et al., 1991). At pH lower than 10, SO4 solubility appears to be controlled by anhydrite 

(CaSO4) and gypsum (CaSO4. 2H2O). Onori et al. (2011) identified anhydrite and gypsum as the 

potential solubility controlling minerals for SO4 leaching from bottom ashes at pH lower than 10. 
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In contrast, amphoteric leaching of SO4 was observed for loess soil (Fig. 3.9a), with minimum 

concentrations at near neutral condition. It is speculated that SO4 anions were absorbed and 

precipitated with Al(OH)3 at neutral environment. A positive correlation between the solution SO4 

and Al concentrations was also observed for loess soil (not included for brevity). Pommerenk and 

Schafran (2005) reported adsorption of SO4 onto precipitated hydrous aluminum oxide and 

concluded that, electrostatic forces at the surface-water interface plays a vital role on SO4 

adsorption mechanism.  

Fig. 3.10 depicts the DIC concentrations of mixtures as a function of pH. The highest DIC 

concentrations were observed at neutral condition, with a sharp decrease in both acidic and alkaline 

environments. An increase in DIC concentrations were also observed at a pH higher than 12. 

Dissolved carbon dioxide (CO2(aq) and H2CO3), bicaronate (HCO3-) and carbonate (CO32-) are the 

major forms of dissolved inorganic carbon (Schulz et al., 2006). In neutral pH, the major 

contribution to DIC arises from the concentrations of HCO3- (Clark, 2015). At pH higher than 

10.3, CO32- becomes the main species (Cole and Prairie, 2009) and precipitates with divalent 

cations, resulting a decrease in DIC concentrations (Langmuir, 1997). Under the acidic condition, 

CO2(aq) and H2CO3 are the dominant species which increased CO2 partial pressure in the solution 

(Clark, 2015). For an equilibrium with the overlying atmosphere, CO2 is released from the solution 

and decreased the DIC concentrations. Nonetheless, effluent DIC concentrations were 

supersaturated by more than an order of magnitude relative to atmospheric pCO2 (380 µatm), 

especially for loess soil and the mixtures. Loess soil was found to be calcareous which increased 

pCO2 in extraction vessel at lower pH values and increased the solubility of CO2. However, this 

assumption could not be verified as the change in partial pressure (pCO2) was not measured during 

the sample extraction process.  
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On the contrary to the DIC leaching behavior, DOC concentrations were higher in both 

acidic and basic conditions while they were minimum at neutral and/or near neutral pH conditions 

(Fig. 3.11). This observation is consistent with Komonweeraket et al. (2015c). Dissolution of high 

molecular weight humic acids in acidic and alkaline pH is the most probable reason of increased 

DOC concentrations (Langmuir, 1997). Also, with the increase in pH, sorption of organic 

substances to the mineral surfaces decreased (Dijkstra et al., 2002). The leached DOC from soil-

slag mixtures were the least pH sensitive in both acidic and basic environments. 100% slag and 

cement also showed no sensitivity to the effluent pH in terms of DOC leaching. According to 

Guimaraes et al. (2006), DOC also depends on calcium leaching and possibly forms DOC-Ca 

complexes. Higher CaO content (Table 3.1) in slag and cement may have leached additional Ca2+ 

which complexed with DOC and remained in the solution.  

3.5.3 Geochemical Modeling 

In order to determine whether the release of a metal is solubility controlled or sorption 

controlled, geochemical analyses were carried out on all samples subjected to pH dependent test 

by utilizing Visual MINTEQ, an equilibrium speciation model (Gustafsson, 2014). The model was 

used to calculate the equilibrium composition of the samples as well as their saturation indices at 

a fixed pH measured in laboratory conditions and by allowing only aqueous complexation 

reactions, following the suggestions of Komonweeraket et al. (2015b) and Apul et al. (2005). Input 

data were the pH, EC, SO4, DIC, DOC and metal concentrations of the pH dependent test samples. 

In addition, the dominant oxidation states of the redox sensitive metals were specified. The 

predominant oxidation states assumed for the elements of interest were Al3+, Cu2+, Fe3+ and Zn2+. 

The analyses were performed on assumption that reactions took place in an open system at a 

temperature of 25 °C under atmospheric partial pressure of CO2(g) and that the leachate was in 

equilibrium with the minerals controlling the solubility (Gustafsson, 2014). The calculated log 
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activities of the metals were plotted with respect to the leachate pH. The plots were then used to 

determine if that particular metal was solubility or sorption controlled. In case the metal is 

solubility controlled, the data points should lie in close proximity to the solubility line of the 

mineral controlling the solubility (Garavaglia and Caramuscio, 1994; Komonweeraket et al., 

2015b; Zhang et al., 2016). 

Fig. 3.12 indicates that leaching of Al3+ for all samples is controlled by 

dissolution/precipitation reactions of aluminium-(hydr)oxides. The geochemical analyses show 

that both gibbsite (Al(OH)3) and boehmite (AlO(OH)) may be the solubility controlling mineral 

phases for all pH values. These findings are in agreement with the previous studies conducted on 

the leaching mechanisms of fly ash (Astrup et al., 2006; Komonweeraket et al., 2015b; Zhang et 

al., 2016). Bhattacharyya et al. (2011) performed an experimental study on solubility behavior of 

fly ash and found out that the saturation index values of gibbsite, which are an important indicator 

if the sample is oversaturated, under-saturated or in equilibrium with respect to a particular 

mineral, vary between -1 and +1, showing that gibbsite might be a solubility controlling mineral. 

Similarly, Masindi et al. (2018) performed geochemical analysis on blast furnace (BF) slag 

leachate and found out that gibbsite controls the solubility of slag leachates at different pH values. 

Mechanisms that control Cu2+ leaching from waste materials has been extensively studied 

in the past by various researchers (Bestgen et al., 2016; Engelsen et al., 2010; Fruchter et al., 1990; 

Garavaglia and Caramuscio, 1994; Komonweeraket et al., 2015b; Murarka et al., 1991; Zhang et 

al., 2016). The findings of previous studies are in good agreement with the results obtained in this 

study. Visual MINTEQ analysis results indicated that Tenorite (CuO) was the solubility 

controlling mineral at neutral to alkaline pH values (Fig. 3.13). At pH values lower than 6, Cu2+ 

leaching was reported to be adsorption controlled. Apul et al. (2005) also indicated that the under-
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saturation at acidic conditions were quiet prominent for [Cu(OH)2(s)], suggesting that at acidic pH 

values, Cu interacts with sorptive surfaces and aqueous complexes other than malachite and 

tenorite and sorption becomes the controlling mechanism. 

As in Al3+, Fe-(hydr)oxides controlled the Fe leaching from materials alone and their 

mixtures. Fig. 3.14 shows that hematite (Fe2O3) and goethite (FeO(OH)) are the two major 

solubility controlling phases for Fe at all pHs. In the literature, ferrihydrite (Fe(OH)3) was also 

reported to govern the solubility mechanism of fly ash (Gitari et al., 2009; Komonweeraket et al., 

2015b). However, the saturation indices for hematite and goethite were lower in this study, similar 

to the results of Bestgen et al. (2016). Thus, they were controlling the leaching mechanism of Fe. 

Fig. 3.15 shows that leaching of Zn2+ is partially controlled by solubility in case different 

types of waste materials are utilized. For each treatment method (Class C fly ash-cement, Class F 

fly ash-cement and slag-cement) as well as control materials, for pH values greater than 8 and 

smaller than 12, leaching mechanism is governed by solubility. However, for neutral to acidic pH 

values as well as extremely alkaline values, the calculated Zn2+ activities were under-saturated 

with respect to zincite (ZnO) and Zn(OH)2, pointing out an adsorption controlled mechanism for 

that pH range. This observation is similar to the results provided in the literature (Bestgen et al., 

2016; Garavaglia and Caramuscio, 1994; Komonweeraket et al., 2015b; Murarka et al., 1991; 

Zhang et al., 2016). Engelsen et al. (2010) proposed that at very high pH values, 

CaZn2(OH)6.2H2O(s) may have controlled the solubility of Zn2+. However, Visual MINTEQ 

database does not include this mineral, thus no information could be obtained. 

3.6 Conclusions 

A study was conducted to investigate the leaching behavior of Al, Cu, Fe and Zn from loess 

soil, Class C and F fly ashes, blast-furnace steel slag, type I/II cement and soil-fly ash/slag-cement 

mixtures. In addition, leachability of SO4, DOC and DIC along with pH and EC were evaluated. 
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To understand the leaching mechanisms, geochemical modelling was performed using Visual 

MINTEQ and pH dependent leach test data. The major findings of this study are summarized as 

follows: 

Addition of fly ash and slag caused an increase in leached Al and SO4 concentrations in 

TCLP solution. After the initial increase, leached Al concentrations did not vary depending on fly 

ash or slag content. Soil-slag-cement mixtures leached the lowest amount of SO4. In all cases, 

concentrations of Al exceeded the regulatory limits determined by U.S. EPA Maximum 

Contaminant Limits (MCLs).  

TCLP concentrations of Cu, Fe and Zn fluctuated with the increase in fly ash or slag 

addition rates. It was anticipated that the leaching behavior of these metals was dependent on both 

effluent pH and total metal content of materials. Concentrations of these metals were below the 

U.S. EPA specified MCLs. DIC concentrations significantly decreased with an increase in fly ash 

or slag content due to the precipitation of divalent metal carbonates.  

The influences of cement content on leaching behavior of elements can be divided into 

three broad sections: (1) Al and SO4 concentrations increased with an increase in cement content, 

(2) Fe and Zn concentrations initially increased and then decreased at higher addition rates, (3) Cu 

and DIC concentrations decreased with an increase in cement content. The change in 

concentrations with cement content was not linear, though the constituents’ mass in the mixtures 

increased/decreased monotonically with cement content.  

The pH dependent leaching of Al, Cu and Zn followed an amphoteric pattern with 

minimum concentrations at neutral/near neutral pH values and higher concentrations at acidic and 

alkaline conditions. Leached concentrations of these elements were significantly higher in acidic 
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conditions compared to those observed in alkaline conditions. Minimum concentrations of Cu and 

Zn were mostly observed at basic pH conditions. 

Fe showed cationic leaching behavior with sharp decrease in concentrations in slight acidic 

to neutral conditions (pH ≅ 5-7). In rest of the pH range, Fe concentrations remained considerably 

low. For Class C fly ash and slag mixtures, small increase in Fe concentrations was observed at 

extreme basic conditions (pH≥ 13) due to the hydrolysis of Fe3+ in the form of Fe(OH)4-.   

The leaching of SO4 was unaffected in the pH range of 2 to 10.5 but decreased abruptly 

with consequent increase in pH. DIC concentrations were maximum at neutral pH values, whereas 

DOC concentrations were higher in acidic and alkaline conditions.  

Similarity in leaching behavior for a given element was observed, regardless the 

compositional differences of the stabilizing materials (fly ashes, slag and cement). This similarity 

indicates homogeneity in leaching controlling mechanisms such as solubility, sorption and solid-

solution interaction and factors such as pH, redox conditions and ionic strength. 

The geochemical analyses conducted via Visual MINTEQ indicated that 

precipitation/dissolution reactions of oxide/hydroxide minerals controlled the solubility of Al3+ 

and Fe3+ at all pH values. On the other hand, leaching of Cu2+ is only solubility controlled at pH 

values larger than 7, whereas Zn2+ leaching is controlled by solubility for pH values between 8 and 

12.  

In general, from the leaching assessment of the materials, it was concluded that cement 

activated fly ash and slag could be used in pavement subgrade soil stabilization. However, cautions 

should be taken regarding the leaching of Al, since the leached concentrations of Al exceeded the 

EPA specified MCL in all cases.   
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3.9 Tables and Figures 

Table 3.1 Chemical composition of fly ashes, slag, cement and soil by X-ray fluorescence 
spectrometry (XRF) 

Soil/Fly 
Ash/Slag pH* LOI 

(%) 
SiO2 
(%) 

Al2O3 
(%) 

Fe2O3 
(%) 

CaO 
(%) 

SO3 
(%) 

MgO 
(%) Classification 

FA-1 12.01 0.24 37.6 18.0 5.9 25.9 1.2 5.2 C FA** 
FA-2 11.64 0.14 56.3 18.6 5.5 11.8 0.4 2.9 F FA** 
Slag 11.60 - 35.7 9.9 0.6 39.8 1.1 10.4 N/A 
Cement 12.65 2.45 20.0 4.4 3.0 64.0 2.9 2.2 Type I/II*** 
Loess 8.57 6.91 67.7 9.6 3.3 5.2 0.03 2.1 ML**** 

Note: FA: Fly ash; *ASTM D 4793;  LOI: Loss on ignition; Hyphen: not available; C FA: Class C fly ash; F FA: Class 
F fly ash; **ASTM C618-17a; ***ASTM C150/C150M -18; N/A: Not applicable; ****USGS classification.  
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Table 3.2 Total metal content of the fly ashes, slag, cement and loess soil determined following 
the U.S. EPA Method 3050B 

Soil/Fly Ash/Slag Al (mg/kg) Cu (mg/kg) Fe (mg/kg) Zn (mg/kg) S (mg/kg) 

C FA 59700 148 34348 98 9103 
F FA 35143 64 21686 49 3176 
Cement 10514 27 10476 43 18200 
Slag 29529 20 2289 26 12600 
Loess 5725 18 13370 44 916 

Note: FA: Fly ash. 
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Table 3.3 Basic properties of fly ashes, slag and soil used in study 

Soil/Fly 
Ash/Slag 

Percent 
Fine 
(%) 

Percent 
Clay 
(%) 

Initial 
Moisture, 
w/w (%) 

Cu Cc Gs LL 
(%) 

PI 
(%) 

C FA 91 8 0.05 3.33 1.31 2.70 NP NP 
F FA 88 3 0.03 22.78 12.19 2.67 NP NP 
Slag 73 7 0.07 3.18 1.5 2.55 NP NP 
Loess 92 11 1.34 10.67 3.38 2.74 24 4 

Notes: Fine < 75 µm; Clay < 0.02 mm; Cu: Coefficient of uniformity; Cc: Coefficient of curvature; Gs: Specific gravity; 
LL: Liquid limit; PI: Plasticity index; NP: Nonplastic. 
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Table 3.4 Experimental setup of the study 

 Fly Ash/ 
Slag Type 

Soil 
Content 
(%) 

Fly Ash 
Content 
(%) 

Type I/II 
Cement 
Content (%) 

Optimum 
Moisture, 
OMC (%) 

Max. Dry 
Density,  
γdmax (kN/m3) 

Class C FA 

87 10 3 18.8 16.6 
84 10 6 17.0 16.6 
74 20 6 14.5 17.0 
54 40 6 14.0 16.7 

Class F FA 

87 10 3 17.5 16.5 
84 10 6 18.0 16.6 
74 20 6 17.0 16.8 
54 40 6 15.2 17.0 

Slag 

87 10 3 18.5 16.3 
84 10 6 18.0 16.6 
74 20 6 17.0 16.7 
54 40 6 18.7 16.8 

Loess 100 0 0 16.2 16.7 
Note: FA: Fly ash; OMC: Weight basis. 
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Figure 3.1 Change in (a) pH with FA and slag content, (b) pH with cement content, (c) EC with 
FA and slag content and (d) EC with cement content in TCLP effluent. Note: Zero and hundred 

percent corresponds to soil and FA/slag only. FA- Fly ash. EC- electric conductivity
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Figure 3.2 Effect of FA/slag content on effuent concentration of (a) Al, (b) Cu, (c) Fe, (d) Zn, (e) SO4 and (f) DIC in TCLP effluent 
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Figure 3.3 Effect of cement content on effuent concentration of (a) Al, (b) Cu, (c) Fe, (d) Zn, (e) SO4 and (f) DIC in TCLP
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Figure 3.4 Acid neutralizing capacity (ANC) of (a) soil, cement, fly ashes and slag, (b) Class C 
FA mixtures, (c) Class F FA mixtures and (d) slag mixtures. Note: FA- Fly ash 
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Figure 3.5 pH dependent leaching of Al in the leachates from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures and (d) slag mixtures. Note: FA- Fly ash 
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Figure 3.6 pH dependent leaching of Cu in the leachates from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures and (d) slag mixtures. Note: FA- Fly ash 
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Figure 3.7 pH dependent leaching of Fe in the leachates from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures and (d) slag mixtures. Note: FA- Fly ash 
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Figure 3.8 pH dependent leaching of Zn in the leachates from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures and (d) slag mixtures. Note: FA- Fly ash 
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Figure 3.9 pH dependent leaching of SO4 in the leachates from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures and (d) slag mixtures. Note: FA- Fly ash 
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Figure 3.10 pH dependent leaching of DIC in the leachates from (a) soil, cement, fly ashes 
and slag, (b) Class C FA mixtures, (c) Class F FA mixtures and (d) slag mixtures. Note: FA- Fly 

ash 
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Figure 3.11 pH dependent leaching of DOC in the leachates from (a) soil, cement, fly ashes 
and slag, (b) Class C FA mixtures, (c) Class F FA mixtures and (d) slag mixtures. Note: FA- Fly 

ash 
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Figure 3.12 Log activity of Al3+ with pH in the effluent from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures and (d) slag mixtures. Note: FA- Fly ash 
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Figure 3.13 Log activity of Cu2+ with pH in the effluent from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures and (d) slag mixtures. Note: FA- Fly ash 
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Figure 3.14 Log activity of Fe3+ with pH in the effluent from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly ash 
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Figure 3.15 Log activity of Zn2+ with pH in the effluent from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures and (d) slag mixtures. Note: FA- Fly ash
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CHAPTER 4.    GEO-ENVIRONMENTAL ASSESSMENT OF CEMENT ACTIVATED 
FLY ASH AND SLAG STABILIZED SOILS: LEACHING BEHAVIORS 

A paper to be submitted to Journal of Environmental Management  

Masrur Mahedi, Bora Cetin and Asli Y. Dayioglu 

4.1 Abstract 

Very few studies have investigated the leaching behavior of elements from cement 

activated fly ash and slag treated soils, although the inclusion of cement significantly enhances the 

material pH and may alter the leachability of the elements. This study sought the leaching behavior 

of Ca, Mg, S, Mn, Ba, Cr and total dissolved carbon (TDC) from cement activated soil-fly ash, 

soil-slag mixtures and soil, fly ash, slag and cement alone. Batch water leach tests, acid 

neutralization capacity (ANC) and pH-dependent leach tests were performed on type I/II Portland 

cement activated Class C fly ash, Class F fly ash and ground granulated blast-furnace slag 

stabilized soils. Effluent concentrations of Ca and Ba increased, Mg decreased, S and TDC varied, 

and Cr and Mn remained unaffected by cement content. Solution pH had the greatest influence on 

the leaching behaviors of the elements. Ca, Mg, S and Mn followed cationic leaching patters, 

whereas Ba showed both cationic and amphoteric leaching characteristics. The highest 

concentrations of Cr were found at extreme acidic conditions, followed by a concentration plateau 

in the pH range of 5.5 to 10, and subsequent decrease and increase in concentrations at pH of 11.5 

and 13, respectively. Geochemical modeling results suggested that except for Cr, the leaching 

mechanisms of the elements were controlled by their sulfate and (hydr)oxide minerals. The 

leaching of Cr was possibly controlled by BaCrO4 and CaCrO4. Carbonate minerals may not play 

a significant role on the leaching mechanisms when cement is used as an activator.  

Keywords: Leaching, metals, batch water leach test, pH-dependent leach test, fly ash, slag, 

cement, geochemical modeling 
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4.2 Introduction 

Despite of the potential of renewable energy, electricity demand surged by urbanization 

and industrial sprawl is largely dependent on the coal combustion power plants. These coal-based 

power plants generate huge amount of fly ashes in both industrialized and developing countries. 

According to American Coal Ash Association (ACAA), in 2017 around 38.2 million tons of fly 

ashes were generated in the United States, and 24.1 million tons of these were reused (ACAA, 

2018). Fly ashes are pozzolanic materials, containing varying amount of lime (CaO), silica (SiO2), 

alumina (Al2O3) and iron oxide (Fe2O3); capable of producing calcium-silicate and calcium-

aluminate hydrates while reacting with water (Thomas, 2007). Some fly ashes (e.g., Class C fly 

ash) exhibit self-cementing capabilities owing to the presence of higher amount of CaO, while 

others (e.g., Class F fly ash, high carbon fly ash) produce supplementary cementitious compounds 

by reacting with an activator (i.e., lime, cement, kiln dust) (Cetin et al., 2010). Similarly, steel 

slags are produced as the by-product from iron manufacturing industries, consisting silicates and 

alumino-silicates of calcium and magnesium (Shi, 2004). As of 2017, the estimated ferrous slag 

production in the U.S. was 15 to 20 million tons (U.S. Geological Survey, 2018). These materials: 

fly ash and slag, have been successfully utilized in a variety of civil engineering applications for 

many years. Previous studies showed the effectivity of fly ashes and slags in soil stabilization by 

ensuring adequate strength, stiffness and durability requirements (Dayioglu et al., 2014; Mahedi 

et al., 2019, 2018; Tastan et al., 2011; Yilmaz et al., 2019). In-situ soil stabilization becomes more 

practical and economical by fly ash and slag, especially in places with fine-grained soils where 

excavation and replacement are costly and labor intensive. However, during the coal combustion 

process at high temperatures, coal minerals undergo phase transformations which may cause 

subsequent leaching of toxic elements from fly ashes (Jones, 1995). In addition, Dayioglu et al. 
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(2018), Gomes and Pinto (2006) reported the leaching of heavy and toxic metals from steel slags 

at different environmental conditions.  

Toxic elements from fly ashes and slag are likely to leach with water, regardless the 

application, storage and disposal conditions. Deportation of these harmful elements contaminate 

surface and groundwater posing significant threat to the living organisms, including substantial 

human health hazard (Cetin et al., 2012b; Chowdhury et al., 2016). Therefore, leaching potential 

and behavior of toxic elements from these recycled products have become a growing concern. 

Previous studies investigated the leaching behavior of elements from different fly ash, slag, and 

fly ash stabilized soils focusing the elements of environmental concern; while overlooking other 

non-hazardous elements such as Ca, Mg and total dissolved carbon (TDC) (Cappuyns et al., 2014; 

Cetin et al., 2012b, 2012c; Komonweeraket et al., 2015b; Kosson et al., 2014; Sas et al., 2015; 

Windt et al., 2011; Zhang et al., 2016). These nontoxic elements are largely released from fly ash 

and slag and their mode of occurrence, precipitation and substitution essentially control the 

effluent pH and subsequently the leachability of toxic elements (Izquierdo and Querol, 2012). 

Moreover, inadequate information exists on the leaching behavior of elements from cement 

activated fly ash and slag stabilized soils. It is anticipated that cement inclusion would alter the 

leachability of elements by enhancing the solution pH significantly.  

Few studies have been undertaken on the leaching behavior of fly ash-cement and slag-

cement stabilized soils (Akhter et al., 1990; Allan and Kukacka, 1995; Kogbara et al., 2014, 2013; 

Li et al., 2018; Wang et al., 2018). Most of these studies focused on the leachability of 

contaminated soils, which were prepared in controlled laboratory conditions by adding aqueous 

metal solutions to an unadulterated soil. Fly ash-cement, and/or slag-cement were used as a 

composite grout where fly ash and slag application rates were limited. These grouts were used as 
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a remediation technique of the stabilized/solidified (S/S) contaminated soils. However, as 

mentioned earlier, fly ash and slag are identified as a potential source of leaching for toxic 

elements. The influence of fly ash or slag content on the leaching of elements from stabilized soils 

needs to be addressed. Additionally, the leaching of metals was only evaluated for a limited pH 

range, though the solution pH is the most crucial parameter controlling the leaching of substances 

from solid to liquid phase (Fruchter et al., 1990; Komonweeraket et al., 2015c; Mudd et al., 2004). 

Pertinent information for the assessment of leaching mechanisms are obtained by pH dependent 

leaching of elements (Dijkstra et al., 2002). Furthermore, to the best of our knowledge, the leaching 

controlling mechanisms of elements from cement activated fly ash and slag stabilized soils yet 

remained unexplored. The effect of cement as an activator also stayed uncharted. 

Based on experimental and numerical assessments, the main objectives of this study were 

to investigate the leaching behavior and leaching mechanisms of elements from cement activated 

fly ash and slag stabilized soils. Two different fly ashes, Class C and F and ground granulated 

blast-furnace steel slag, were utilized because of their widespread implications in soil stabilization. 

Type I/II Portland cement was applied as an activator for fly ash and slag stabilization. Batch water 

leach tests (WLT) were performed on cement activated soil-fly ash, soil-slag mixtures and soil, fly 

ashes, slag and cement alone to evaluate the leaching behavior of metals as a function of fly ash, 

slag and cement contents. An experimental array of 17 blends were prepared, and the leached 

concentrations of Ca, Mg, S, Mn, Ba, Cr and TDC were considered. pH-dependent leach tests were 

performed to investigate the influence of pH on the leaching characteristics of elements in the pH 

range of 2 to 13. pH dependent leaching of the elements from soil-fly ash-cement and soil-slag-

cement mixtures were compared to soil, fly ash, slag and cement alone. Furthermore, geochemical 

modeling program Visual MINTEQ was implemented for speciation analyses and to identify the 



www.manaraa.com

96 

 
 

leaching controlling mechanisms of elements from cement activated fly ash and slag stabilized 

soils. 

4.3 Materials 

Two different fly ashes (FA) and ground granulated blast furnace steel slag (Slag) were 

used in the current study. Type I/II Portland cement was implemented as an activator due to lower 

cementation properties of fly ashes and slag. The chemical compositions of the fly ashes, slag and 

cement were determined by X-ray fluorescence spectrometry (XRF) and are reported in Table 4.1. 

Following ASTM C618, fly ashes were classified as Class C and F, respectively. As tabulated in 

Table 4.1, CaO content of slag was higher (39.8%) compared to the fly ashes, nonetheless the 

effluent pH was lower (11.6). This indicated the insoluble forms of Ca in slag and the necessity of 

an activator such as cement. The total metal contents of the stabilizers were also determined 

following the U.S. EPA Method 3050B and are summarized in Table 4.1. Table 4.1 indicates that 

Ca and S contents were the highest in cement, whereas maximum Mg and Mn contents were 

detected in slag. Class C fly ash had the highest Ba and Cr contents.  

Frost susceptible Iowa loess soil, often subjected to the chemical treatments was selected 

for the current study. Grain size distributions of the soil, fly ashes and slag were performed in 

accordance with ASTM C136 and are presented in Figure 4.1. The liquid limit (LL) and plasticity 

index (PI) of the soil were determined to be 24 and 4, respectively (ASTM D4318). According to 

Unified Soil Classification System (USCS), the soil was classified as low plasticity silt (ML). 

Additionally, loess soil was found to be calcareous with higher Ca and Mg contents from total 

elemental analysis. The pH of the soil was 8.57 which is moderately alkaline. Moreover, the 

specific gravity of soil along with fly ashes and slag was determined following ASTM D854 and 

are reported in Table 4.1.  
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4.4 Method 

4.4.1 Sample Preparation 

Cement activated soil-fly ash and soil-slag mixtures were prepared by both varying fly 

ash/slag and cement contents to investigate the compositional influence of the stabilizing agents 

on the leaching behavior of elements. An array of mixtures was prepared based on strength and 

stiffness requirements determined by previous studies (Aldeeky and Al Hattamleh, 2017; Oormila 

and Preethi, 2014; Tastan et al., 2011; Yilmaz et al., 2019), where the recommended maximum 

use of fly ash or slag for soil stabilization was 20%. In addition, 40% soil-fly ash and soil-slag 

mixtures were prepared to investigate the leaching behavior of elements as a function of fly ash or 

slag content. All the blends contained either 3% or 6% of type I/II Portland cement. A summary 

of the blends along with the optimum moisture content (OMC) and maximum dry density (MMD) 

determined by ASTM D698 is provided in Table 4.2. The OMC and MMD of the mixtures were 

in the range of 14% to 18.8% and 16.3 kN/m3 to 17 kN/m3, respectively. All the soil-fly ash-

cement and soil-slag-cement mixtures were prepared at OMC on dry weight basis. The mixtures 

were cured in plastic bags for 7 days at room temperature (21°C) and 100% relative humidity 

chamber. Cured samples were crushed and passed through U.S. No. 10 sieve for leach test sample 

preparation. Leach tests were also performed on untreated soil and stabilizers alone for an overall 

understanding of the leaching behaviors, leaching mechanisms and comparisons.  

4.4.2 Batch Water Leach Test (WLT) 

Batch water leach tests (WLT) were performed in accordance with ASTM D4793. A liquid 

to solid (L/S) ratio of 10 was used to simulate the representative field conditions (Kosson et al., 

2002). The influent solution for WLT was prepared with 0.02 M NaCl (sodium chloride) to provide 

stable reaction conditions (Cetin et al., 2014). The mixtures were rotated at 29 rpm for 18±0.25 

hours. Once the equilibrium condition was established, pH and electric conductivity of the 



www.manaraa.com

98 

 
 

supernatant fluid were measured. The solutions were then pressure filtered through 0.2-μm pore 

size and 25 mm diameter membrane disk filter papers, using acid washed pressure filter holders 

fitted to 60 mL plastic syringes. A portion of the filtered extract was acidified with 10% trace metal 

grade nitric acid (HNO3) to a pH less than 2 and stored in refrigerator at temperature less than 4 

ºC for metal analysis. Another non-acidified aliquot was immediately subjected to total dissolved 

carbon (TDC) measurements. 

4.4.3 pH-Dependent Leach Test 

pH-dependent leach tests were performed on cement activated soil-fly ash, soil-slag 

mixtures and soil, fly ashes, slag, cement alone following the U.S. EPA Method 1313 to quantify 

the effect of pH on the liquid-solid partitioning (LSP) curves of the elements. A liquid to solid 

(L/S) ratio of 10 was maintained throughout the experimental program. Samples were prepared at 

9 different target pH values (2, 4, 5.5, 7, 8, 9, 10.5, 12 and 13; ±0.5). The target pH values represent 

diverse exposure conditions, such as natural stabilized soil, neutral environment, landfill situation, 

acid rain and field environment. Nano-pure water with 1 N potassium hydroxide (KOH) or 2 N 

trace metal grade nitric acid (HNO3) was used to attain the target pH values. The required volumes 

of acid, base and water for a specific pH were pre-determined by exploiting the acid neutralization 

capacity (ANC) of the mixtures. ANCs were evaluated by adding varying quantities of acid, base 

and water with a 40 g of mixtures at a constant liquid-solid (L/S) ratio of 10. Moisture content of 

the mixtures (i.e., OMC) was also considered. Solutions were then agitated at a rotation rate of 28 

rpm for 48±2 hours. Lastly, the pH of the solutions was determined to quantify the acid/base 

buffering capacity of the mixtures. Final pH-dependent leach test samples were also agitated for 

48±2 hours at a rotation rate of 28 rpm. After rotation, effluent pH and electric conductivity (EC) 
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were measured. The extracts were then pressure filtered and stored for chemical analyses following 

the same procedures adopted for WLTs.  

4.4.4 Chemical Analysis 

Inductively coupled plasma optical emission spectroscopy (ICP-OES) was utilized for the 

elemental analyses of the extracted leachate. The ICP-OES was calibrated with known 

concentrations of multi-element standards. Due to a wide range in metal concentrations, multiple 

calibration curves were prepared for pH-dependent leach test samples. Check standards and blanks 

were analyzed at every 9 samples to verify the calibration curves and to ensure uniform aspiration 

condition. The minimum detection limits (MDLs) of ICP-OES for Ca, Mg, Mn, Ba, S and Cr were 

2.2 µg/L, 1.2 µg/L, 0.4 µg/L, 0.4 µg/L, 22 µg/L and 0.5 µg/L, respectively. 

The concentrations of TDC in the extracts were measured by Shimadzu TOC-V analyzer 

with ASI-V auto-sampler. The instrument was calibrated by potassium hydrogen phthalate 

(C8H5KO4) standard solutions. Samples were introduced to total carbon (TC) combustion tube and 

heated to 680 ºC with the presence of an oxidizing catalyst. The oxidizing catalyst was prepared 

by dissolving specific amount of sodium persulfate (Na2S2O8) and 85% phosphoric acid (H3PO4) 

into nano-pure water. The samples were oxidized, and the TC components were decomposed to 

form carbo dioxide (CO2). The nitrogen carrier gas delivered the combustion products to the cell 

of a non-dispersive infrared (NDIR) gas analyzer, where CO2 concentrations were quantified.  

4.4.5 Geochemical Modeling 

There are two known mechanisms that control the leaching of elements: solubility 

controlled and sorption controlled leaching (Komonweeraket et al., 2015b). To assess the leaching 

controlling mechanisms of the elements from cement activated soil-fly ash, soil-slag mixtures and 

soil, fly ashes, slag, cement alone; geochemical modeling programs VisualMINTEQ and 

Geochemist’s Workbench (GWB) (Bethke and Yeakel, 2015) were employed. VisualMINTEQ 
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was utilized to calculate the ion activities, speciation and saturation indices whereas GWB was 

used to plot the Ternary and Schoeller diagrams. Input data used in VisualMINTEQ were the pH, 

electrical conductivity (EC) values of the leachates, major and trace element concentrations 

obtained from pH-dependent leaching tests. 

4.5 Results and Discussion 

4.5.1 Batch Water Leach Tests (WLT) 

4.5.1.1 pH and electric conductivity (EC) 

Solution pH is an important factor largely influencing the leaching criteria of metals and 

minerals (Daniels and Das, 2006). Electric conductivity (EC) depends on cation and anion 

concentrations, providing an estimation of the effluent ionic strength (Gräfe et al., 2009). Higher 

ionic strength decreases surface negativity of soil particles through electrostatic effects which may 

induce additional leaching of elements (Sparks, 2003). Figure 4.2 shows the effect of fly ash and 

slag content on pH and EC of the effluents from batch water leach tests. As presented in Figure 

4.2a, the pH of the mixtures increased with fly ash and slag content, though the increases were not 

significant beyond the addition rate of 10%. These indicated the influence of cement as an 

activator. Mixtures prepared with slag showed slightly higher pH values, nonetheless the pH of 

100% slag was the lowest. According to Engström et al. (2013), the dissolution rates of primary 

slag minerals are slow. Despite of higher CaO content in slag (Table 4.1), lower dissolution rates 

of Ca bearing minerals (merwinite, akermanite and gehlenite) were the most probable reason for 

lower pH of pure slag. To verify this hypothesis, slag was subjected to X-ray diffraction (XRD) 

analysis for the mineralogical investigation (not included for brevity). From XRD analysis, 

merwinite was identified as the primary mineral of slag used in this study. Additionally, elevated 

pH of the soil-slag-cement mixtures indicates the necessity and effectivity of cement as an 

activator. Cement may have improved the hydration of slag minerals, increasing the leached Ca2+ 
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concentrations. Release of Ca2+ produces Ca(OH)2 which increases the pH of the effluent (Johnson 

et al., 1999). The variations of pH for Class F fly ash were almost the similar to slag mixtures. 

Cement incorporation resulted higher pH values of soil-F FA mixtures compared to F FA alone.   

Like pH, EC significantly increased with the initial (10%) addition of fly ash or slag content 

(Figure 4.2b). After the initial increase, EC did not change noticeably for Class C fly ash and slag 

blends, signifying larger influence of cement addition. In contrast, a decrease in EC was observed 

with Class F fly ash content. It is anticipated that, the EC of the solutions was largely dependent 

on the leaching of alkaline earth metals such as Ca, Mg and Ba, along with common anions such 

as CO32- and SO42-. These cations and anions precipitate at elevated pH, decreasing the solution 

ion concentrations. As seen from Table 4.1, CaO and MgO contents of Class F fly ash were very 

low to compensate the precipitation of the ions. Therefore, effluent EC decreased with the increase 

in Class F fly ash content. Additionally, the lowest value of EC was observed for slag alone due 

to lower dissolution rates of slag minerals (Engström et al., 2013). 

4.5.1.2 Effect of cement content on the leaching behavior 

The effect of cement content on the effluent concentrations of Ca, Mg, S, Mn, Ba and Cr 

is illustrated in Figure 4.3. Mixtures prepared at 10% fly ash or slag content with varying 

percentage of cement (3% and 6%) were considered for the analyses. As indicated in Figure 4.3a 

and 4.43e, Ca and Ba concentrations increased, whereas Mg concentrations decreased with the 

increase in cement content (Figure 4.3b). With the addition of cement, elemental concentrations 

of Ca increased which subsequently increased the leached Ca concentrations. The leaching of Mg 

and Ba is largely dependent on the solution pH. Mg follows a cationic leaching pattern whereas 

the leaching behavior of Ba is amphoteric (Engelsen et al., 2010; Komonweeraket et al., 2015c). 

Therefore, an increase in cement content increased the solution pH significantly, which 

subsequently increased the leached Ba concentrations. The effluent Mg concentrations decreased 
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due to the precipitation of Mg cations as dolomite and/or magnesite at higher pH values 

(Komonweeraket et al., 2015a). 

Except for Class F fly ash, S concentrations (Figure 4.3c) decreased with an increase in 

cement content. The effluent pH increased with cement addition which facilitated the formation 

and precipitation of insoluble ettrintige (Ca6Al2(SO4)3(OH)12·26H2O). Formation of ettringite 

was unlikely for Class F fly ash blends since CaO and SO3 contents were the lowest in F FA (Table 

4.1). Therefore, an increase in S concentration was observed for Class F fly ash at elevated cement 

content (6%). In case of Mn, leached concentrations almost remained unaffected by cement 

additions with variations less than 0.5 µg/L (Figure 4.4d). Small variations in Cr concentrations 

were also observed, especially for fly ash treated samples. However, leached Cr concentration 

slightly increased with the increase in cement content at the presence of slag in the mixtures. 

4.5.1.3 Effect of fly ash or slag content on the leaching behavior of elements 

Figure 4.4 shows the variation of Ca, Mg, S, Mn, Ba and Cr concentrations from cement 

activated fly ash and slag treated soils as a function of fly ash or slag content. Leached 

concentrations from soil-fly ash and soil-slag mixtures with 6% cement content were considered 

for the analyses. As seen from Figure 4.4a, Ca concentrations initially increased with the addition 

of fly ash and slag content. Higher CaO content (Table 4.1) of fly ashes and slag compared to soil 

contributed significantly to the leached concentrations of Ca. After the initial increase, a slight 

decrease in concentrations was observed, though the CaO content of the mixtures increased 

proportionally with the increase in fly ash or slag addition rates. Ca follows a cationic leaching 

pattern where leached concentration decreases with the increase in solution pH (Bestgen et al., 

2016a; Engelsen et al., 2010). An increase in fly ash or slag content increased the solution pH 

which consequently decreased the aqueous concentrations of Ca. Furthermore, smaller variation 
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in Ca concentrations were observed, regardless the fly ash or slag type indicating greater influence 

of cement on the leaching of Ca. 

As indicated in Figure 4.4b, the highest amount of Mg leached from loess soil (15.7 mg/L), 

which significantly decreased in the stabilization process. It is anticipated that, dissolution of 

dolomite and magnesite due to lower soil pH (pH = 8.57) was associated with the higher leaching 

of Mg. Dolomite and magnesite were detected in loess soil from XRD analysis (not included for 

brevity). For the cement activate soil-fly ash and soil-slag mixtures, Mg concentrations were near 

the detection limit because of higher effluent pH (> 11.5). 100% Class F fly ash leached higher 

amount of Mg compared to Class C fly ash. For slag mixtures, after the initial decrease at 10% 

addition rate, leached concentrations of Mg increased with the increase in slag content. As 

indicated in Table 4.1, the highest amount of Mg content was found in Slag (Table 4.1) which 

could have contributed to the effluent Mg concentrations.  

Regardless the stabilizer type, S concentrations significantly increased at 10% addition 

rates (Figure 4.4c). After the initial increase in concentrations, three different leaching patterns of 

S were observed. For Class C fly ash mixtures, S concentrations decreased with the addition rates. 

This implies the formation and precipitation of insoluble ettringite at highly alkaline conditions 

(van der Sloot, 2002). An increasing trend of S leaching was observed for Class F fly ash mixtures, 

suggesting minor/no formation of ettringite. Ettringite occurs only when lime (CaO) is abundant 

in the solution (Hassett et al., 2005), which is unlikely due to lower CaO content of Class F fly ash 

(Table 4.1). For slag mixtures, S concentrations fluctuated within a narrow range (19.2-24.1 mg/L) 

indicating lesser influence of pH and the addition rates. Zhang et al. (2016) reported similar 

leaching behavior of sulfate, identifying gypsum and anhydrite as the major leaching controlling 

minerals.  
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The variation of effluent Mn concentrations as a function of fly ash or slag content is 

presented in Figure 4.4d. Leaching of Mn were very low (< 10 µg/L) and remained within a narrow 

range. Mn is generally associated with the glass fraction and/or ferromagnetic particles in fly ashes 

(Kim et al., 2003; Warren and Dudas, 1988). Extremely low leaching rates of Mn from both glass 

fraction and ferromagnetic particles were reported by Querol et al. (2001). For Class C fly ash and 

slag mixtures, leached Mn concentrations slightly increased with addition rates, which was 

consistent with the findings by Cetin et al. (2012a). In all cases, Mn concentrations were lower 

than the U.S. EPA specified maximum concentration limits (MCL) for drinking waters (50 µg/L). 

As depicted in Figure 4.4e, Ba concentrations generally increased with an increase in fly 

ash or slag content. For Class F fly ash and slag alone, solution Ba concentrations were lower than 

their mixtures. As mentioned earlier, Ba follows an amphoteric leaching with higher 

concentrations in both acidic and alkaline pH conditions (Komonweeraket et al., 2015c). For all 

the mixtures, pH increased with fly ash or slag content beyond the pH of 11.75, which increase 

leached concentrations of Ba. The pH values for 100% F fly ash and slag were relatively lower 

which was the reason for lower leaching of Ba. The U.S. EPA lists Ba as the primary drinking 

water regulation standard. Leached Ba concentrations exceeded the U.S. EPA specified MCL of 2 

mg/L for cement activated soil-fly ash mixtures.  

Figure 4.4(f) shows that addition of fly ash or slag initially increased the effluent Cr 

concentrations. The highest concentrations of Cr were observed for Class F fly ash, whereas Cr 

concentrations were the lowest for slag mixtures. From total metal analysis, the lowest Cr content 

was observed in slag (Table 4.2). Additionally, after the initial increase, Cr concentrations 

decreased with Class C fly ash and slag content. It is anticipated that Cr has precipitated with Ca 

by forming Cr-Ca solid solutions, and subsequently reduced the effluent Cr concentrations 
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(Cornelis et al., 2008). A linear correlation was found when the effluent Cr concentrations were 

plotted against the leached concentrations of Ca from all the mixtures (R2 = 0.48, not included for 

brevity). However, for Class F fly ash mixtures, Cr concentration increased with fly ash content, 

which might have happened due to low CaO content of Class F fly ash. For all Class F fly ash 

blends, Cr concentrations exceeded U.S. EPA specified MCL (100 µg/L) for drinking waters. 

4.5.1.4 Total dissolved carbon (TDC) concentrations 

Figure 4.5 shows the aqueous concentrations of TDC from the mixtures. As seen in Figure 

5a, TDC concentrations increased with the increase in cement content for the fly ash mixtures. 

Both the organic and inorganic carbon contributed to the TDC concentrations of the effluents. 

Dissolution and desorption of organic matters from the mineral surfaces at higher pH are the most 

probable reasons for the increased concentrations of TDC with cement content (Dijkstra et al., 

2002; Langmuir, 1997).  

With few exceptions, TDC concentrations decreased with fly ash or slag content (Figure 

4.5b). Dissolved carbon dioxide (CO2(aq)), bicarbonate (HCO3-) and carbonate (CO32-) are the 

forms of inorganic carbons in the solution (Schulz et al., 2006). Inorganic carbons count for the 

higher fraction in TDC (Jarvie et al., 2017). In the pH range of WLT effluents (Figure 4.2), 

carbonates dominated and precipitated with divalent cation which consequently decreased the 

TDC concentrations (Bestgen et al., 2016b). In addition, 100% slag leached the highest amount of 

TDC because of the lowest pH (11.6) of the effluent solutions. For soil-slag-cement, a decrease in 

TDC concentration was observed at higher cement content (Figure 4.5a). The precipitation of 

carbonates may have surpassed the desorption of organic matters and therefore, decreased the TDC 

concentration with cement content. 
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4.5.2 Acid-Base Neutralization Capacity (ANC) 

Acid neutralization capacity (ANC) of cement activated soil-fly ash, soil-slag mixtures and 

soil, fly ashes, slag, cement alone was evaluated by adding varying amount of acid or base with 

the solids. Figure 4.6 shows the ANC of the mixtures, where the addition of base is characterized 

by negative milliequivalents per gram weight of dry sample. As seen from Figure 4.6a, loess soil 

and Class F fly ash showed very low buffering capacities in the pH range of 12.4 to 4.8. For Class 

F fly ash, slight improvement in ANC was observed at pH lower than 4. In contrast, Class C fly 

ash and slag showed greater neutralization capacities, resulting from their higher CaO and MgO 

content (Table 4.1). Two distinct plateaus were identified in the ANC curve of Class C fly ash at 

pH range of 8.26 to 6.23 and 4 to 2.43. For slag, the plateau was observed in between the pH values 

of 9.43 and 6.92. According to Roy and Cartledge (1997), silicates and aluminosilicates start to 

dissolve at pH 8, which is the most probable reason for the observed first plateau. Dissolution of 

gypsum, calcium carbonate and gibbsite may have shaped the second plateau, owing to their 

neutralization capacity at pH about 5 (Chen et al., 2009). Depending on Ca containing minerals, 

variations in equilibrium pH were observed (Giampaolo et al., 2002). The highest ANC was 

observed for type I/II cement with 3 plateaus identified at pH range of 12.6 to 12.4, 11.8 to 11.6 

and 10.8 to 9.5. Soluble portlandite along with higher Ca/Si ratio (>1.8) of calcium-silicate-hydrate 

resulted the first plateau, whereas the second plateau was associated with lower Ca/Si ratio (<1.5) 

of calcium silicate hydrate (C-S-H) (Isenburg and Moore, 1992; Stronach and Glasser, 1997). The 

third plateau was ascribed due to Mg(OH)2 causing a pH detention at around pH values of 9 

(Fernández et al., 2003).  

Cement, soil and fly ash type influenced the ANC of the mixtures. As seen in Figure 4.6b 

and 4.6d, ANC of cement activated soil-C FA and soil-slag mixtures lay in between the 

neutralization capacities of soil and C FA or slag alone. Buffering capacity of these mixtures 
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increased noticeably with the increase in fly ash and slag content. Influence of cement was less 

pronounced due to higher buffering capacities of C FA and slag. For cement activated soil-F FA 

mixtures, neutralization capacities were higher compared to both the soil and F FA alone, 

indicating larger influence of cement. Higher neutralization capacity of cement and lower CaO 

content (Table 4.1) of Class F fly ash are the probable reasons for the observed inclination.  

4.5.3 pH-dependent Leach Test 

4.5.3.1 Leaching of Ca, Mg and S 

Leaching behavior of Ca, Mg and S from cement activated fly ash and slag treated soils 

followed cationic leaching patterns where concentrations decreased with the increase in solution 

pH (Figure 4.7, 4.8 and 4.9). Dissolution of minerals and desorption of cations at acidic conditions 

significantly increased their concentrations. Tiruta-Barna et al. (2006) found that strength of acid 

increased as the pH decreased which intensified the attack on the metal bearing minerals and thus 

increased the leached concentrations of cationic elements. Also, sorption of Ca, S and Mg is less 

favored at acidic conditions, especially at pH less than 6 (Komonweeraket et al., 2015c). For Class 

F fly ash mixtures, leached concentrations of Ca and S were higher compared to F FA alone, 

indicating the influence of cement incorporation. Additionally, higher leachability of Ca and S 

were observed for cement while, slag showed maximum leaching of Mg. At a fixed pH value, 

small variations in concentrations were observed, irrespective to fly ash or slag contents. The 

differences were even lower at alkaline conditions, indicating maximum leaching of the elements, 

regardless the addition rates.  

According to Warren and Dudas (1985), gypsum (CaSO4) and anhydrite (CaSO4. 2H2O) 

are the potential solubility controlling minerals for the leaching of Ca at acidic to slight alkaline 

conditions (pH of 1.5 to 10). Sulfur concentrations within this pH range are also controlled by the 

dissolution and precipitation of gypsum and anhydrite. Fruchter et al. (1990) reported that sulfur 
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(S) predominantly existed as sulfate (SO42−), especially at oxidizing conditions. At pH values 

higher than 10.7, SO4 precipitated by forming insoluble ettringite resulting a decrease in both Ca 

and S concentrations (Gabrisová et al., 1991; Hassett et al., 2005). Moreover, at higher pH values 

(pH > 9), carbonates become more important and calcite (CaCO3) and/or aragonite (CaCO3) plays 

an important role on the leaching behavior of Ca (Stumm and Morgan, 1996). At higher pH, sulfate 

and carbonate minerals of Ca and Mg may have precipitated and decreased their effluent 

concentrations. Roy et al. (1984) also concluded that Ca concentrations at alkaline conditions in 

equilibrium with atmospheric carbon dioxide are controlled by the solubility of calcite. In addition, 

leaching of Ca from fly ashes could be controlled by unstable CaO, loosely attached at the surface 

of fly ash particles (Warren and Dudas, 1984).  

Similarly, leaching behavior of Mg was controlled by the solubility of carbonate minerals 

such as magnesite (CaMg(CO3)2) and dolomite (MgCO3). Previous studies have identified 

magnesite and dolomite as the major leaching controlling minerals for Mg in fly ash and slag 

effluents (Apul et al., 2005; Garavaglia and Caramuscio, 1994; Komonweeraket et al., 2015a).  

4.5.3.2 Leaching of Mn 

As seen in Figure 4.10, higher concentrations of Mn were observed up to the pH values of 

6 to 7, which decreased drastically at pH around 7. The decrease rates were lower in the pH range 

of 10 to 13. Thus, Mn showed a cationic leaching pattern because of the dissolution and 

precipitation of manganese (hydro)oxides (Cetin et al., 2012c). In acidic and neutral condition, 

Mn2+ cations were freely available (Gitari et al., 2009), therefore increased the effluent 

concentrations. Moreover, the point of zero charge (PZC) of the mixtures could have a profound 

influence on the leaching behavior of Mn. According to Wang et al. (2007), the pH associated with 

the PZC of Class C and F fly ashes is in between 6.2 and 7.6. At pH lower than PZC, fly ash 

particles were positively charged which significantly decreased the sorption of the cations. As the 
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pH rises above PZC, fly ash particles developed negative charges and induced sorption of Mn 

cations, resulting an overall decrease in dissolved concentrations. For cement activated soil-slag 

mixtures similar observations were made, though the speculated PZC was in the pH range of 7.6 

to 8. At pH higher than 10, the lower leaching of Mn could be controlled by the solubility of 

pyrochroite (Mn(OH)2) (Komonweeraket et al., 2015b), which is further investigated in the 

geochemical modeling section. 

4.5.3.3 Leaching of Ba 

Figure 4.11 illustrates the leaching behavior of Ba as a function of pH from cement 

activated soil-fly ash, soil-slag mixtures and soil, fly ashes, slag alone. Two different leaching 

patterns of Ba were observed based on the materials used in this study. Loess soil, fly ashes and 

their mixtures showed amphoteric leaching pattern where Ba concentrations increased both in 

acidic and alkaline conditions. In contrast, cement, slag and slag mixtures showed cationic pattern 

with an inversely proportional relationship between concentration and effluent pH. Leaching of 

Ba from cement activated soil-F FA mixtures was relatively pH independent, showing lesser 

variations in concentrations depending on pH. Similar leaching behaviors of Ba were observed in 

previous studies from fly ashes and soil-fly ash mixtures (Komonweeraket et al., 2015a), MSWI 

air-pollution-control residue (Astrup et al., 2006) and steel slags (Fällman, 2000; Loncnar et al., 

2016).  

The leaching of Ba is believed to be associated with barite (BaSO4) and witherite (BaCO3). 

Komonweeraket et al. (2015a) claimed that in the pH range of 1.5 to 10, the leaching of Ba from 

fly ash treated soils was controlled by barite, whereas witherite controlled the Ba concentrations 

at pH higher than 10. Ba can also co-precipitate with sulfate and strontium (Sr) as barite-celestite 

[(Ba,Sr)SO4], especially with the presence of large amount of Ca (Fruchter et al., 1990). From total 

metal analysis (Table 4.1), higher amount of Ca and S were detected in slag and cement. 
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Precipitation of Ba-Sr-sulfate solid solution at higher pH could be a reason for the cationic leaching 

of Ba from cement, slag and soil-slag mixtures. The leaching mechanisms of Ba are discussed 

more in details in geochemical modeling section. 

4.5.3.4 Leaching of Cr 

The leaching behavior of Cr demonstrated oxyanionic leaching patterns, with higher 

concentrations in acidic pH values (pH < 3), which decreased considerably at neutral or slightly 

acidic conditions (Figure 4.12). From pH values of 5.5 to 10, a concentration plateau was 

identified, followed by a decrease (pH ≅ 11.5), and subsequent increase in Cr concentrations at 

extreme pH conditions (pH ≅ 13). The observed plateau was less pronounced for soil-slag 

mixtures resulting in the pH range of 5.5 to 7. However, Komonweeraket et al. (2015b) indicated 

an amphoteric leaching behavior of Cr from soil-fly ash mixtures. The difference could be 

attributed to the presence of Cr as Cr(VI) and Cr(III) in this current and previous study. The pH of 

the fly ashes used in the previous study were close to neutral pH conditions, while due to cement 

activation, the pH of the mixtures prepared in this study were very high (pH > 11.5). Therefore, 

Cr in this study could be in its oxidized form (Cr6+), whereas reduced form of Cr (i.e., Cr3+) was 

identified by the previous study.  

Additionally, an amphoteric leaching pattern of Cr was observed for loess soil. The leached 

Cr concentrations were significantly higher for cement and Class F fly ash alone (Figure 4.12a). 

For soil-F fly ash mixtures, leaching of Cr was nearly pH independent, with small variation in 

concentrations depending on pH. Previous studies claimed that Cr may become immobilized by 

replacing Silicon (Si) in C-S-H gel, as the ionic radius of and Si(OH)4 and Cr(OH)4- are comparable 

(Glasser, 1997; Olmo et al., 2001). Minor formation of C-S-H in cement and soil-F fly ash mixtures 

might have increased the effluent Cr concentrations. However, this claim could not be verified 

since Si concentrations were not measured in this study. 
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4.5.3.5 Leaching of TDC 

The leached concentrations of total dissolved carbon (TDC) as a function of pH from soil-

fly ash-cement, soil-slag-cement and soil, fly ashes, slag and cement alone are presented in Figure 

4.13. Highest concentrations of TDC were observed at neutral or near neutral pH values, with 

slight increase in concentrations both in extreme acidic (pH < 2) and alkaline (pH > 12) conditions. 

Dissolved organic and inorganic carbon mutually contributed to the total dissolved carbon 

concentrations in the leachates. Organic carbon yields from soil organic matters and are bonded 

with oxygen and hydrogen, whereas inorganic carbon occurs mainly at three forms: carbonate 

(CO32-), bicarbonate (HCO3-) and carbonic acid/dissolved carbon dioxide [H2CO3/CO2(aq))] 

(Schulz et al., 2006).  

Generally, total dissolved carbon concentrations are dominated by inorganic carbon (Jarvie 

et al., 2017), which is also observed in this current study (not included for brevity). At neutral pH 

conditions, the higher concentrations of TDC were due to the presence of bicarbonates (Clark, 

2015). As the pH increases, carbonates appear to be ubiquitous and become the major species at 

pH higher than 10.3 (Cole and Prairie, 2009). Subsequently, DIC concentrations decreased as the 

carbonates precipitated with divalent cations such as Ca, Mg, Sr and Ba (Garrabrants et al., 2004; 

Langmuir, 1997).  

In acidic conditions, H2CO3/CO2(aq) dominated which increased the CO2 partial pressure 

in the effluent (Clark, 2015). Consequently, CO2 evaded for equilibrium with atmospheric CO2 

and decreased DIC concentrations. Nonetheless, the effluents were supersaturated with TDC 

relative to the partial pressure of atmospheric CO2 (380 µatm), indicating the contribution of 

organic carbon. Dissolved organic carbon (DOC) are reliant on Ca leaching because of the possible 

formation of DOC-Ca complexes (Guimaraes et al., 2006). At acidic conditions, organic carbon 

may have remained in the solution by DOC-Ca complexes and contributed to TDC concentrations. 
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Additionally, high molecular weight humic acids could dissolved at alkaline conditions and 

increase the TDC concentrations (Langmuir 1997). Furthermore, at higher pH, the sorption of 

DOC to mineral surfaced decreases which contributes to TDC at pH higher than 12 (Dijkstra et 

al., 2002).  

4.5.4 Geochemical Modeling 

Geochemical modeling was performed based on the pH-dependent leach test results from 

all the cement activated soil-fly ash, soil-slag mixtures and soil, fly ashes, slag alone. The 

equilibrium speciation models, Visual MINTEQ and Geochemist’s Workbench (GWB) were 

implemented. An equilibrium between the solubility controlling minerals and the leachate was 

assumed at 25° C and under the atmospheric CO2 partial pressure (10-3.5 atm). Aqueous 

complexation reactions at a fixed pH was allowed for geochemical modeling by Visual MINTEQ 

as suggested by Apul et al. (2005).  

Figures 4.14 to 4.21 illustrate the geochemical modeling results. Figure 4.14 shows the 

results of Ternary diagrams for pure materials, soil-class C fly ash mixtures, soil-class F fly ash 

mixtures and soil-slag mixtures, respectively. The results show that except soil-slag mixtures (Fig 

14d), the leachates have somewhat comparable concentrations of Ba2+, Mn2+ and CrO42-. The 

Ba/Mn and Ba/CrO42- molar ratios are significantly large due to elemental composition of the 

materials (Table 4.1).  

A Schoeller diagram (Schoeller, 1962) yields the concentrations of major cations and 

anions on a semi-logarithmic plot where the ion names are presented on the x-axis and the analyte 

concentrations are given on the logarithmically scaled y-axis in meq/L. The concentration of each 

analyte is plotted as a point and the diagram is generated by connecting the points and forming a 

“fingerprint diagram”. This enables description of any sample by dominant cations and anions. 

The Schoeller diagrams of pure cement, FFA, CFA and slag at neutral pH values (pH = 6.53-6.83) 
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are given in Figure 4.15. The results indicate that even though all samples have similar fingerprints, 

the leachate concentrations differ significantly due to nature of the materials. Cement and FFA 

have the highest and lowest Ca2+ concentrations, respectively. Steel slag has been reported to have 

a considerable amount of Ca2+ and Mg2+ (Dayioglu et al 2018), hence the Ca2+ concentration is 

larger compared with FFA. After slag, cement, CFA and FFA have the largest to smallest Mg2+ 

concentrations. The interrelationships among the concentrations of sulfur, barium and chromium 

in steel slag and fly ash leachates have been extensively studied and evaluated in previous studies 

(Fruchter et al 1990, Fallman and Aurell 1996). On the contrary to the compounds above, despite 

of their low S percentage in the elemental compositions, CFA and FFA have similar and highest 

sulfate concentrations on natural pH within the leachates, followed by cement and slag, 

respectively. This might be due to fact that even though their S concentrations are low, SO42- is 

reported to be the dominant species in fly ashes (Fruchter 1990, Izquierdo and Querol 2012). On 

the other hand, ettringite (Ca6(Al)2(OH)12(SO4)3:26H2O) has been shown to exist in steel slag, 

which might have caused free sulfate concentration to decrease (Huijgen and Comans, 2006). 

Similarly, Barite (BaSO4) is known to control the Ba2+ solubility in steel slag, the horizontal line 

on the fingerprint diagram of slag (Fig 15d) agrees with previous findings (Fallman, 2000). Mn2+ 

leaching from the materials depends on the initial material composition, where highest 

concentration is observed in slag leachate, with remaining materials yielding similar 

concentrations (Table 4.1 and Figure 4.15). 

Depending of effluent pH, the leaching of Ca, Mg and Ba are known to be controlled by 

sulfate and carbonate minerals (Komonweeraket et al., 2015a; Zhang et al., 2016). As shown in 

Figures 4.16, similar leaching mechanisms of Ca was observed for cement activated fly ash and 

slag treated soils. From the solubility lines of the minerals of Ca, gypsum and anhydrite were 
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identified as the potential solubility controlling minerals for Ca at the pH range of 2 to 7, whereas 

it may be controlled by gypsum, anhydrite and calcite between the pH of 7 and 8 (Figure 4.16). 

Previous studies indicated that, carbonate minerals control the leaching of Ca2+ from fly ash in 

alkaline solutions in equilibrium with atmosphere (Komonweeraket et al., 2015a; Mudd et al., 

2004; Roy et al., 1984; Stumm and Morgan, 1996). However, in the leachate from cement activated 

soil-fly ash and soil-slag mixtures Ca2+ activity was controlled by gypsum and anhydrite up to the 

pH of 11. Dissolution of gypsum and anhydrite from the cement paste possibly contributed Ca 

cations into the leachate and subsequently precipitated calcite (Langmuir, 1997). Additionally, at 

pH higher than 11, portlandite started to influence the leaching mechanisms of Ca. These results 

indicated that calcite may not play a significant role on the leaching of Ca from soil-fly ash and 

soil-slag systems when cement is used as an activator.  

Gypsum and anhydrite also controlled the solubility of sulfate from soil-fly ash-cement 

and soil-slag-cement mixtures throughout the whole pH range (Figure 4.17). Slight undersaturation 

was observed with respect to gypsum and anhydrite, which could have happened due to incomplete 

dissolution of these minerals. Inadequate presence of minerals in solid phase is also a possible 

reason of undersaturation. This observation is in agreement with the leaching mechanisms of 

sulfate from pure fly ash and slag materials (Dayioglu et al., 2018; Komonweeraket et al., 2015a). 

The geochemical modeling results showed that Mg solubility was controlled by carbonate 

minerals (dolomite and magnesite) only in the pH range of 7 to 8 (Figure 4.18), although previous 

studies reported that the dolomite and magnesite are the solubility controlling solids for Mg 

throughout the alkaline pH conditions (Apul et al., 2005; Garavaglia and Caramuscio, 1994; 

Komonweeraket et al., 2015a). Conversely, brucite controlled the solubility of Mg in the pH range 

of 8 to 14 from cement activated fly ash and slag treated soils. At acidic pH values, disassociated 
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activities of Mg2+ with respect to the solubility lines indicated that Mg leaching was not solubility 

controlled. Apul et al (2005) concluded that at pH values lower than 7, the model predictions and 

the lab concentrations start to deviate, revealing the potentially adsorption controlled leaching 

mechanism at acidic pH values.  

Figure 4.19 presents the log activity diagrams of Ba2+ with respect to the pH for pure 

materials as well as the mixtures. Leaching controlling mechanisms of Ba are quite complex, since 

it may be present in sulfate or carbonate minerals, or might react with other metals such as Sr or 

Cr and co-precipitate (Fruchter et al., 1990; Komonweeraket et al., 2015a; Mudd et al., 2004). As 

seen in Figure 4.19, the Ba2+ activities did not exhibit a pH dependent behavior and remained 

constant at all pH values, in close proximity to the solubility line of barite (BaSO4) with slight 

oversaturation. The oversaturation indicated the possible formation of Ba(S, Cr)O4 and/or (Ba, 

Sr)SO4 solid solutions (Komonweeraket et al., 2015a). Between pH values of 8.5 and 10, Ba 

leaching may be controlled by witherite (BaCO3) as well, as reported by (Zhang et al., 2016), 

however it should be noted that both solubility lines intersect within this region. Diversely, 

Komonweeraket et al. (2015) and Mudd et al. (2004) reported that at pH higher than 10, witherite 

controlled the leaching of Ba from fly ash and fly ash stabilized soils. In this study cement was 

used as an activator for fly ash and slag treatment, which possibly worked as an additional source 

of sulfate in the solution. Gypsum and anhydrite are the major sources of sulfate and were 

identified in cement and Class C fly ash by XRD analysis.  

Figure 4.20 illustrates that Mn2+ leaching is controlled by the dissolution/precipitation 

reactions of manganese (hydro)oxides at alkaline pH values (pH > 7). Zhang et al (2016) also 

showed that the cationic leaching pattern of Mn was demonstrated by Mn(OH)2 precipitation, and 

leaching mechanism of Mn was controlled by the dissolution/precipitation of Mn(OH)2. Under 
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neutral and acidic conditions, Mn2+ are freely available and the dissolution of the tephroite-

forsterite might control the leaching of Mn (Gitari et al., 2009; Pareuil et al., 2010). 

Unlike some of the previous studies, leaching of CrO42- from cement activated fly ash and 

slag mixtures was not controlled by the dissolution/precipitation reactions of its (hydr)oxides 

(Figure 4.21). Previous studies found the reduced form Cr3+ in the fly ash leachate and claimed 

that amorphous Cr(OH)3, crystalline Cr(OH)3, and Cr2O3 could control the leaching of Cr from fly 

ash and soil-fly ash mixtures (Gitari et al., 2009; Komonweeraket et al., 2015b; Loncnar et al., 

2016; Mulugeta et al., 2011; Reardon et al., 1995; Theis et al., 1982). Lower pH of the fly ash 

and/or soil-fly ash mixtures used in these studies was the most probable reason for the observed 

inclination. However, current study propose that BaCrO4 and CaCrO4 could controlled the 

leaching of Cr(VI) from soil-fly ash-cement and soil-slag-cement mixtures due to high pH values 

resulted from cement activation. Figure 4.22 shows the log activities of CrO42- with respect to the 

log activities of Ba2+ along with the solubility line of BaCrO4. The log activities of Cr were 3 to 7 

order of magnitude lower than the solubility line of BaCrO4, indicating that BaCrO4 may control 

the solubility of Cr. Fallman (2000) pointed out that concentrations of Ba and Cr may be controlled 

by the solubility of solid phases BaSO4 and Ba(S, Cr)O4. Similar observation was made with 

respect to CaCrO4, but the Cr activities were approximately 7 to 12 magnitude lower than the 

saturation line of CaCrO4. Other studies also claimed that BaCrO4 and CaCrO4 might control the 

leaching of Cr(VI) in highly alkaline conditions such as the leachate from cement solidified 

refinery sludge and ash (Karamalidis and Voudrias, 2008), high pH fly ash (Zhang et al., 2016), 

recycled concrete aggregate (Bestgen et al., 2016; Engelsen et al., 2010) and MSWI air pollution-

control residues (Astrup et al., 2006).  
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3.6 Conclusions 

Batch water leach tests (WLT) and pH-dependent leach tests were performed to investigate 

the leaching behavior of major and trace elements (Ca, Mg, S, Mn, Ba and Cr) from cement 

activated soil-fly ash, soil-slag mixtures and soil, fly ash, slag and cement alone. Additionally, pH, 

electric conductivity (EC) and total dissolved carbon (TDC) concentrations in the test effluents 

were evaluated. Geochemical modeling program Visual MINTEQ was implemented to investigate 

the leaching controlling mechanisms of the elements. Based on this experimental study the 

following conclusions were obtained: 

1. Cement activation had diverse influences on the leached concentrations of the 

elements in batch water leach tests. Ca and Ba concentrations increased, Mg concentrations 

decreased, and S and TDC concentration varied with the increase in cement content. Aqueous 

concentrations of Mn and Cr remained unaffected by the addition of cement in soil-fly ash-cement 

and soil-slag-cement mixtures. 

2. Solution pH and EC initially increased with the addition of fly ash or slag content 

but stayed unchanged at further addition rates. Along with the basic oxide contents, fly ash/slag 

mineralogy and dissolution rates of the minerals played an important role on the solution pH and 

EC. Cement had the greater effect on pH and EC of the effluent of the mixtures.  

3. Effluent pH had the most significant influence on the leaching of elements rather 

than the fly ash or slag addition rates. Except for soil-slag-cement mixtures, WLT effluent 

concentrations of Ba and Cr exceeded the regulatory limits determined by the U.S. EPA MCLs 

(Maximum Contaminant Limits) of 2000 µg/L and 100 µg/L, respectively. 

4. Acid/base neutralizing capacity provided an indication of the hydration products 

and minerals of soil, fly ashes, slag, cement and their mixtures, along with a basis for qualitative 
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comparisons. Besides, ANCs revealed that the fly ashes and slag used in this study can produce 

pozzolanic reactions.  

5. Ca, Mg, S and Mn followed cationic leaching patterns, where concentrations 

decreased with the increase in solution pH. An increase in fly ash or slag content did not cause a 

significant increase in the leaching of metals from the mixtures. This indicates that the mode of 

occurrence played the major role compared to the total elemental concentrations of metals in the 

mixtures.  

6. The leaching of Ba followed both cationic and amphoteric patterns depending on 

the materials used in this study. Loess soil, fly ashes and their mixtures showed amphoteric 

leaching, where minimum concentrations occurred at neutral and near neutral pHs. Conversely, 

cement, slag and slag mixtures showed cationic leaching of Ba.  

7. Cr showed neither a cationic, an amphoteric, nor an oxyanionic leaching behavior. 

A concentration plateau was identified in the pH range of 5.5-10, which was followed by 

subsequent decrease and increase in concentrations at pH of 11.5 and 13, respectively. The 

variations could be due to the abundance of other divalent ions such as Ca, SO42- and Mg, 

difference in speciation (Cr3+ vs Cr6+) and complexation with other minerals and organic/inorganic 

carbons. 

8. Total dissolved carbon (TDC) concentrations were the highest at neutral/near 

neutral pH values, but decreased drastically in both acidic and alkaline conditions. Moreover, in 

extreme acidic and alkaline pH conditions, an increase in TCD was observed. The highest 

concentrations of TDC at neutral pH values were associated with inorganic carbons (bicarbonates), 

whereas at extreme pH conditions TDC increased because of the dissolution and desorption of 

organic matters.  
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9. The geochemical analyses conducted via Visual MINTEQ indicated that solubility 

of Ca2+, Ba2+ and S6+ were controlled by precipitation/dissolution reactions of sulfate minerals 

(gypsum, anhydrite, barite) at all pH values. At pH higher than 11, portlandite influenced the 

leaching mechanisms of Ca2+. Carbonate minerals (calcite, aragonite, witherite) may not play an 

important role on the leaching mechanisms of these elements from cement activated fly ash and 

slag stabilized soils.  

10.  Leaching of Mg2+ and Mn2+ was only solubility controlled at pH values higher than 

8. Alike Ca2+, Mg2+ leaching at higher pH values was controlled by brucite rather than the 

carbonate minerals such as dolomite, magnesite. Pyrochroite controlled the leaching of Mn2+ at 

alkaline conditions.  

11. Instead of reduced Cr3+, oxidized form Cr6+ was found to be dominant in soil-fly 

ash-cement and soil-slag-cement leachate. Leaching of CrO42- was not controlled by the solubility 

of its (hydr)oxides. The log activity diagrams showed that BaCrO4 and CaCrO4 may have control 

the leaching of CrO42-, which is analogous with the leaching of Cr from highly alkaline waste 

materials.  

12. Results indicated that, the use of cement activated slag mixtures is the safer option 

compared to cement activated fly ash mixtures in soil stabilization considering the leaching 

characteristics of the elements. Cement activated slag stabilized soils leached lower concentrations 

of Ca, Mg, S, Mn, Ba and Cr compared to cement-fly ash-soil mixtures.   

3.7 References 

ACAA, 2018. Coal combustion products production & use statistics. Farmington Hills, MI. 

Akhter, H., Butler, L.G., Branz, S., Cartledge, F.K., Tittlebaum, M.E., 1990. Immobilization of 
As, Cd, Cr and PB-containing soils by using cement or pozzolanic fixing agents. J. Hazard. Mater. 
24, 145–155. https://doi.org/10.1016/0304-3894(90)87006-4 



www.manaraa.com

120 

 
 

Aldeeky, H., Al Hattamleh, O., 2017. Experimental study on the utilization of fine steel slag on 
stabilizing high plastic subgrade soil. Adv. Civ. Eng. 2017, 1–11. 
https://doi.org/10.1155/2017/9230279 

Allan, M.L., Kukacka, L.E., 1995. Blast furnace slag-modified grouts for in situ stabilization of 
chromium-contaminated soil. Waste Manag. 15, 193–202. https://doi.org/10.1016/0956-
053X(95)00017-T 

Apul, D.S., Gardner, K.H., Eighmy, T.T., Fällman, A.M., Comans, R.N.J., 2005. Simultaneous 
application of dissolution/precipitation and surface complexation/surface precipitation modeling 
to contaminant leaching. Environ. Sci. Technol. 39, 5736–5741. 
https://doi.org/10.1021/ES0486521 

Astrup, T., Dijkstra, J.J., Comans, R.N.J., Sloot, H.A. van der, Christensen, T.H., 2006. 
Geochemical modeling of leaching from MSWI air-pollution-control residues. Environ. Sci. 
Technol. 40, 3551–3557. https://doi.org/10.1021/ES052250R 

Bestgen, J.O., Cetin, B., Tanyu, B.F., 2016a. Effects of extraction methods and factors on leaching 
of metals from recycled concrete aggregates. Environ. Sci. Pollut. Res. 23, 12983–13002. 
https://doi.org/10.1007/s11356-016-6456-0 

Bestgen, J.O., Hatipoglu, M., Cetin, B., Aydilek, A.H., 2016b. Mechanical and environmental 
suitability of recycled concrete aggregate as a highway base material. J. Mater. Civ. Eng. 28, 
04016067. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001564 

Bethke, C.M., Yeakel, S., 2015. GWB Essentials Guide. The Geochemist’s Workbench, Aqueous 
Solutions, LLC, Champaign, Illinois. 

Cappuyns, V., Alian, V., Vassilieva, E., Swennen, R., 2014. pH dependent leaching behavior of 
Zn, Cd, Pb, Cu and As from mining wastes and slags: Kinetics and mineralogical control. Waste 
and Biomass Valorization 5, 355–368. https://doi.org/10.1007/s12649-013-9274-3 

Cetin, B., Aydilek, A.H., Guney, Y., 2012a. Leaching of trace metals from high carbon fly ash 
stabilized highway base layers. Resour. Conserv. Recycl. 58, 8–17. 
https://doi.org/10.1016/J.RESCONREC.2011.10.004 

Cetin, B., Aydilek, A.H., Guney, Y., 2010. Stabilization of recycled base materials with high 
carbon fly ash. Resour. Conserv. Recycl. 54, 878–892. 
https://doi.org/10.1016/J.RESCONREC.2010.01.007 

Cetin, B., Aydilek, A.H., Li, L., 2014. Trace metal leaching from embankment soils amended with 
high-carbon fly ash. J. Geotech. Geoenvironmental Eng. 140, 1–13. 
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000996 

Cetin, B., Aydilek, A.H., Li, L., 2012b. Experimental and numerical analysis of metal leaching 
from fly ash-amended highway bases. Waste Manag. 32, 965–978. 
https://doi.org/10.1016/J.WASMAN.2011.12.012 



www.manaraa.com

121 

 
 

Cetin, B., Aydilek, A.H., Li, L., 2012c. Experimental and numerical analysis of metal leaching 
from fly ash-amended highway bases. Waste Manag. 32, 965–978. 
https://doi.org/10.1016/j.wasman.2011.12.012 

Chen, Q., Zhang, L., Ke, Y., Hills, C., Kang, Y., 2009. Influence of carbonation on the acid 
neutralization capacity of cements and cement-solidified/stabilized electroplating sludge. 
Chemosphere 74, 758–764. https://doi.org/10.1016/J.CHEMOSPHERE.2008.10.044 

Chowdhury, S., Mazumder, M.A.J., Al-Attas, O., Husain, T., 2016. Heavy metals in drinking 
water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 
569–570, 476–488. https://doi.org/10.1016/J.SCITOTENV.2016.06.166 

Clark, I.D., 2015. Groundwater Geochemistry and Isotopes, 1st ed. CRC press, Boca Raton, 
Florida, USA. 

Cole, J.J., Prairie, Y.T., 2009. Dissolved CO2, in: Likens, G.E. (Ed.), Encyclopedia of Inland 
Waters. Elsevier, Amsterdam, Netherlands, pp. 30–34. 

Cornelis, G., Johnson, C.A., Gerven, T. Van, Vandecasteele, C., 2008. Leaching mechanisms of 
oxyanionic metalloid and metal species in alkaline solid wastes: A review. Appl. Geochemistry 
23, 955–976. https://doi.org/10.1016/J.APGEOCHEM.2008.02.001 

Daniels, J.L., Das, G.P., 2006. Leaching behavior of lime–fly ash mixtures. Environ. Eng. Sci. 23, 
42–52. https://doi.org/10.1089/ees.2006.23.42 

Dayioglu, A.Y., Aydilek, A.H., Cetin, B., 2014. Preventing swelling and decreasing alkalinity of 
steel slags used in highway infrastructures. Transp. Res. Rec. J. Transp. Res. Board 2401, 52–57. 
https://doi.org/10.3141/2401-06 

Dayioglu, A.Y., Aydilek, A.H., Cimen, O., Cimen, M., 2018. Trace metal leaching from steel slag 
used in structural fills. J. Geotech. Geoenvironmental Eng. 144, 04018089. 
https://doi.org/10.1061/(ASCE)GT.1943-5606.0001980 

Dijkstra, J.J., van der Sloot, H.A., Comans, R.N.J., 2002. Process identification and model 
development of contaminant transport in MSWI bottom ash. Waste Manag. 22, 531–541. 
https://doi.org/10.1016/S0956-053X(01)00034-4 

Engelsen, C.J., van der Sloot, H.A., Wibetoe, G., Justnes, H., Lund, W., Stoltenberg-Hansson, E., 
2010. Leaching characterisation and geochemical modelling of minor and trace elements released 
from recycled concrete aggregates. Cem. Concr. Res. 40, 1639–1649. 
https://doi.org/10.1016/J.CEMCONRES.2010.08.001 

Engström, F., Adolfsson, D., Samuelsson, C., Sandström, Å., Björkman, B., 2013. A study of the 
solubility of pure slag minerals. Miner. Eng. 41, 46–52. 
https://doi.org/10.1016/j.mineng.2012.10.004 



www.manaraa.com

122 

 
 

Fällman, A.-M., 2000. Leaching of chromium and barium from steel slag in laboratory and field 
tests — a solubility controlled process? Waste Manag. 20, 149–154. 
https://doi.org/10.1016/S0956-053X(99)00313-X 

Fernández, A.I., Chimenos, J.M., Raventós, N., Miralles, L., Espiell, F., 2003. Stabilization of 
electrical arc furnace dust with low-grade MgO prior to landfill. J. Environ. Eng. 129, 275–279. 
https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(275) 

Fruchter, J.S., Rai, D., Zachara, J.M., 1990. Identification of solubility-controlling solid phases in 
a large fly ash field lysimeter. Environ. Sci. Technol. 24, 1173–1179. 
https://doi.org/10.1021/es00078a004 

Gabrisová, A., Havlica, J., Sahu, S., 1991. Stability of calcium sulphoaluminate hydrates in water 
solutions with various pH values. Cem. Concr. Res. 21, 1023–1027. https://doi.org/10.1016/0008-
8846(91)90062-M 

Garavaglia, R., Caramuscio, P., 1994. Coal fly-ash leaching behaviour and solubility controlling 
solids. Stud. Environ. Sci. 60, 87–102. https://doi.org/10.1016/S0166-1116(08)71450-X 

Garrabrants, A.C., Sanchez, F., Kosson, D.S., 2004. Changes in constituent equilibrium leaching 
and pore water characteristics of a Portland cement mortar as a result of carbonation. Waste 
Manag. 24, 19–36. https://doi.org/10.1016/S0956-053X(03)00135-1 

Giampaolo, C., Mastro, S.L., Polettini, A., Pomi, R., Sirini, P., 2002. Acid neutralisation capacity 
and hydration behaviour of incineration bottom ash–Portland cement mixtures. Cem. Concr. Res. 
32, 769–775. https://doi.org/10.1016/S0008-8846(01)00760-8 

Gitari, W.M., Fatoba, O.O., Petrik, L.F., Vadapalli, V.R.K., 2009. Leaching characteristics of 
selected South African fly ashes: Effect of pH on the release of major and trace species. J. Environ. 
Sci. Heal. Part A 44, 206–220. https://doi.org/10.1080/10934520802539897 

Glasser, F.P., 1997. Fundamental aspects of cement solidification and stabilisation. J. Hazard. 
Mater. 52, 151–170. https://doi.org/10.1016/S0304-3894(96)01805-5 

Gomes, J.F.P., Pinto, C.G., 2006. Leaching of heavy metals from steelmaking slags. Rev. Metal. 
42, 409–416. https://doi.org/10.3989/revmetalm.2006.v42.i6.39 

Gräfe, M., Power, G., Klauber, C., 2009. Review of bauxite residue alkalinity and associated 
chemistry, CSIRO Document DMR-3610. Project ATF-06-3: Management of Bauxite Residues. 

Guimaraes, A.L., Okuda, T., Nishijima, W., Okada, M., 2006. Organic carbon leaching behavior 
from incinerator bottom ash. J. Hazard. Mater. 137, 1096–1101. 
https://doi.org/10.1016/J.JHAZMAT.2006.03.047 

Hassett, D.J., Pflughoeft-Hassett, D.F., Heebink, L. V., 2005. Leaching of CCBs: Observations 
from over 25 years of research, in: Hower, J.C. (Ed.), Fuel. Elsevier, pp. 1378–1383. 
https://doi.org/10.1016/J.FUEL.2004.10.016 



www.manaraa.com

123 

 
 

Isenburg, J., Moore, M., 1992. Generalized acid neutralization capacity test, in: Stabilization and 
Solidification of Hazardous, Radioactive, and Mixed Wastes: 2nd Volume. ASTM International, 
100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, pp. 361-361–17. 
https://doi.org/10.1520/STP19564S 

Izquierdo, M., Querol, X., 2012. Leaching behaviour of elements from coal combustion fly ash: 
An overview. Int. J. Coal Geol. 94, 54–66. https://doi.org/10.1016/J.COAL.2011.10.006 

Jarvie, H.P., King, S.M., Neal, C., 2017. Inorganic carbon dominates total dissolved carbon 
concentrations and fluxes in British rivers: Application of the THINCARB model – 
Thermodynamic modelling of inorganic carbon in freshwaters. Sci. Total Environ. 575, 496–512. 
https://doi.org/10.1016/J.SCITOTENV.2016.08.201 

Johnson, C.A., Kaeppeli, M., Brandenberger, S., Ulrich, A., Baumann, W., 1999. Hydrological 
and geochemical factors affecting leachate composition in municipal solid waste incinerator 
bottom ash: Part II. The geochemistry of leachate from Landfill Lostorf, Switzerland. J. Contam. 
Hydrol. 40, 239–259. https://doi.org/10.1016/S0169-7722(99)00052-2 

Jones, D.R., 1995. The Leaching of major and trace elements from coal ash, in: Environmental 
Aspects of Trace Elements in Coal. Springer, Dordrecht, Netherlands, pp. 221–262. 
https://doi.org/10.1007/978-94-015-8496-8_12 

Kim, A.G., Kazonich, G., Dahlberg, M., 2003. Relative solubility of cations in Class F fly ash. 
Environ. Sci. Technol. 37, 4507–4511. https://doi.org/10.1021/ES0263691 

Kogbara, R.B., Al-Tabbaa, A., Stegemann, J.A., 2014. Comparisons of operating envelopes for 
contaminated soil stabilised/solidified with different cementitious binders. Environ. Sci. Pollut. 
Res. 21, 3395–3414. https://doi.org/10.1007/s11356-013-2276-7 

Kogbara, R.B., Al-Tabbaa, A., Yi, Y., Stegemann, J.A., 2013. Cement–fly ash 
stabilisation/solidification of contaminated soil: Performance properties and initiation of operating 
envelopes. Appl. Geochemistry 33, 64–75. https://doi.org/10.1016/J.APGEOCHEM.2013.02.001 

Komonweeraket, K., Cetin, B., Aydilek, A., Benson, C.H., Edil, T.B., 2015a. Geochemical 
analysis of leached elements from fly ash stabilized soils. J. Geotech. Geoenvironmental Eng. 141, 
04015012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001288 

Komonweeraket, K., Cetin, B., Aydilek, A.H., Benson, C.H., Edil, T.B., 2015b. Effects of pH on 
the leaching mechanisms of elements from fly ash mixed soils. Fuel 140, 788–802. 
https://doi.org/10.1016/J.FUEL.2014.09.068 

Komonweeraket, K., Cetin, B., Benson, C.H., Aydilek, A.H., Edil, T.B., 2015c. Leaching 
characteristics of toxic constituents from coal fly ash mixed soils under the influence of pH. Waste 
Manag. 38, 174–184. https://doi.org/10.1016/J.WASMAN.2014.11.018 

Kosson, D.S., Garrabrants, A.C., DeLapp, R., van der Sloot, H.A., 2014. pH-dependent leaching 
of constituents of potential concern from concrete materials containing coal combustion fly ash. 
Chemosphere 103, 140–147. https://doi.org/10.1016/J.CHEMOSPHERE.2013.11.049 



www.manaraa.com

124 

 
 

Kosson, D.S., van der Sloot, H.A., Sanchez, F., Garrabrants, A.C., 2002. An integrated framework 
for evaluating leaching in waste management and utilization of secondary materials. Environ. Eng. 
Sci. 19, 159–204. https://doi.org/10.1089/109287502760079188 

Langmuir, D., 1997. Aqueous Environmental Geochemistry. Prentice Hall, Upper Saddle River, 
New Jersey, USA. 

Li, J.-S., Wang, L., Cui, J.-L., Poon, C.S., Beiyuan, J., Tsang, D.C.W., Li, X.-D., 2018. Effects of 
low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: 
Spectroscopic investigation and leaching tests. Sci. Total Environ. 631–632, 1486–1494. 
https://doi.org/10.1016/j.scitotenv.2018.02.247 

Loncnar, M., van der Sloot, H.A., Mladenovič, A., Zupančič, M., Kobal, L., Bukovec, P., 2016. 
Study of the leaching behaviour of ladle slags by means of leaching tests combined with 
geochemical modelling and mineralogical investigations. J. Hazard. Mater. 317, 147–157. 
https://doi.org/10.1016/J.JHAZMAT.2016.05.046 

Mahedi, M., Cetin, B., Cetin, K.S., 2019. Freeze-thaw performance of phase change material 
(PCM) incorporated pavement subgrade soil. Constr. Build. Mater. 202, 449–464. 
https://doi.org/10.1016/J.CONBUILDMAT.2018.12.210 

Mahedi, M., Cetin, B., White, D.J., 2018. Performance evaluation of cement and slag stabilized 
expansive soils. Transp. Res. Rec. J. Transp. Res. Board 036119811875743. 
https://doi.org/10.1177/0361198118757439 

Mudd, G.M., Weaver, T.R., Kodikara, J., 2004. Environmental geochemistry of leachate from 
leached brown coal ash. J. Environ. Eng. 130, 1514–1526. https://doi.org/10.1061/(ASCE)0733-
9372(2004)130:12(1514) 

Olmo, I.F., Chacon, E., Irabien, A., 2001. Influence of lead, zinc, iron (III) and chromium (III) 
oxides on the setting time and strength development of Portland cement. Cem. Concr. Res. 31, 
1213–1219. https://doi.org/10.1016/S0008-8846(01)00545-2 

Oormila, T.., Preethi, T.V., 2014. Effect of stabilization using flyash and GGBS in soil 
characteristics. Int. J. Eng. Trends Technol. 11, 284–289. 
https://doi.org/10.14445/22315381/IJETT-V11P254 

Querol, X., Umaña, J.., Alastuey, A., Ayora, C., Lopez-Soler, A., Plana, F., 2001. Extraction of 
soluble major and trace elements from fly ash in open and closed leaching systems. Fuel 80, 801–
813. https://doi.org/10.1016/S0016-2361(00)00155-1 

Roy, A., Cartledge, F.K., 1997. Long-term behavior of a Portland cement-electroplating sludge 
waste form in presence of copper nitrate. J. Hazard. Mater. 52, 265–286. 
https://doi.org/10.1016/S0304-3894(96)01812-2 

Roy, W.R., Griffin, R.A., Dickerson, D.R., Schuller, R.M., 1984. Illinois basin coal fly ashes. 1. 
Chemical characterization and solubility. Environ. Sci. Technol. 18, 734–739. 
https://doi.org/10.1021/es00128a003 



www.manaraa.com

125 

 
 

Sas, W., Głuchowski, A., Radziemska, M., Dzięcioł, J., Szymański, A., 2015. Environmental and 
geotechnical assessment of the steel slags as a material for road structure. Materials (Basel). 8, 
4857–4875. https://doi.org/10.3390/ma8084857 

Schulz, K.G., Riebesell, U., Rost, B., Thoms, S., Zeebe, R.E., 2006. Determination of the rate 
constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems. 
Mar. Chem. 100, 53–65. https://doi.org/10.1016/J.MARCHEM.2005.11.001 

Shi, C., 2004. Steel Slag—its production, processing, characteristics, and cementitious properties. 
J. Mater. Civ. Eng. 16, 230–236. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(230) 

Sparks, D.L., 2003. Environmental Soil Chemistry. Academic Press, San Diego, California, USA. 
https://doi.org/https://doi.org/10.1016/B978-0-12-656446-4.X5000-2 

Stronach, S.A., Glasser, F.P., 1997. Modelling the impact of abundant geochemical components 
on phase stability and solubility of the CaO—SiO2 —H2O system at 25°C: Na+, K+, SO42-, Cl- 
and CO32-. Adv. Cem. Res. 9, 167–181. https://doi.org/10.1680/adcr.1997.9.36.167 

Stumm, W., Morgan, J.J., 1996. Aquatic Chemistry : Chemical Equilibria and Rates in Natural 
Waters. Wiley & Sons, Hoboken, New Jersey, USA. 

Tastan, E.O., Edil, T.B., Benson, C.H., Aydilek, A.H., 2011. Stabilization of organic soils with fly 
ash. J. Geotech. Geoenvironmental Eng. 137, 819–833. https://doi.org/10.1061/(ASCE)GT.1943-
5606.0000502 

Thomas, M., 2007. Optimizing the use of fly ash in concrete. Skokie, Ill.  Portl. Cem. Assoc. 24. 
https://doi.org/10.15680/IJIRSET.2015.0409047 

Tiruta-Barna, L., Rakotoarisoa, Z., Méhu, J., 2006. Assessment of the multi-scale leaching 
behaviour of compacted coal fly ash. J. Hazard. Mater. 137, 1466–78. 
https://doi.org/10.1016/j.jhazmat.2006.04.039 

U.S. Geological Survey, 2018. Mineral commodity summaries 2018: U.S. Geological Survey. 
Washington, DC. https://doi.org/https://doi.org/10.3133/ 70194932 

van der Sloot, H.., 2002. Characterization of the leaching behaviour of concrete mortars and of 
cement–stabilized wastes with different waste loading for long term environmental assessment. 
Waste Manag. 22, 181–186. https://doi.org/10.1016/S0956-053X(01)00067-8 

Wang, F., Shen, Z., Al-Tabbaa, A., 2018. An evaluation of stabilised/solidified contaminated 
model soil using PC-based and MgO-based binders under semi-dynamic leaching conditions. 
Environ. Sci. Pollut. Res. 25, 16050–16060. https://doi.org/10.1007/s11356-018-1591-4 

Wang, T., Wang, J., Burken, J.G., Ban, H., Ladwig, K., 2007. The leaching characteristics of 
selenium from coal fly ashes. J. Environ. Qual. 36, 1784. https://doi.org/10.2134/jeq2007.0143 



www.manaraa.com

126 

 
 

Warren, C.J., Dudas, M.J., 1988. Leaching behaviour of selected trace elements in chemically 
weathered alkaline fly ash. Sci. Total Environ. 76, 229–246. https://doi.org/10.1016/0048-
9697(88)90110-6 

Warren, C.J., Dudas, M.J., 1985. Formation of secondary minerals in artificially weathered fly ash. 
J. Environ. Qual. 14, 405. https://doi.org/10.2134/jeq1985.00472425001400030019x 

Warren, C.J., Dudas, M.J., 1984. Weathering processes in relation to leachate properties of 
alkalinefly Ash. J. Environ. Qual. 13, 530. 
https://doi.org/10.2134/jeq1984.00472425001300040005x 

Windt, L. De, Chaurand, P., Rose, J., 2011. Kinetics of steel slag leaching: Batch tests and 
modeling. Waste Manag. 31, 225–235. https://doi.org/10.1016/J.WASMAN.2010.05.018 

Yilmaz, Y., Coban, H.S., Cetin, B., Edil, T.B., 2019. Use of standard and off-spec fly ashes for 
soil stabilization. J. Mater. Civ. Eng. 31, 04018390. https://doi.org/10.1061/(ASCE)MT.1943-
5533.0002599 

Zhang, Y., Cetin, B., Likos, W.J., Edil, T.B., 2016. Impacts of pH on leaching potential of elements 
from MSW incineration fly ash. Fuel 184, 815–825. https://doi.org/10.1016/J.FUEL.2016.07.089 



www.manaraa.com

127 

 
 

3.8 Tables and Figures 

Table 4.1 Chemical compositions, physical properties and metal contents of fly ashes, slag, 
cement and soil 

Chemical Compositrion* Class C 
FA 

Class F 
FA 

Slag Cement Soil 

pHa 12.01 11.64 11.6 12.65 8.57 
CaO (%) 25.9 11.8 39.8 64 5.2 
MgO (%) 5.2 2.9 10.4 2.2 2.1 
K2O (%) 0.49 1.1 0.41 0.55 2.06 
Na2O (%) 1.65 0.58 0.24 0.14 1.33 
SiO2 + Al2O3 + Fe2O3 (%) 61.5 80.4 46.2 27.4 80.6 
SiO2 (%) 37.6 56.3 35.7 20 67.7 
Al2O3 (%) 18 18.6 9.9 4.4 9.6 
Fe2O3 (%) 5.9 5.5 0.6 3 3.3 
SO3 (%) 1.2 0.4 1.1 2.9 0.03 
Loss on ignition, LOI (%) 0.24 0.14 N/A 2.45 6.91 
Initial moisture, w/w (%) 0.05 0.03 0.07 N/A 1.34 
Specific Gravity, Gs 2.7 2.67 2.55 N/A 2.74 
Liquid limit, LL (%) NP NP NP NP 24 
Plasticity Index, PI (%) NP NP NP NP 4 
Classification Class Cb Class Fb - Type I/IIc MLd  
Total metal concentration (mg/kg)**  
Ca 143142 60300 186228 313810 33100 
Mg 24414 10371 64685 9564 11348 
Mn 279 295 1,847 280 602 
Ba 4379 1440 211 61 222 
Cr 70.3 69.3 35.3 35 29.6 
S 9103 3176 12600 18200 916 

Note: *From X-ray fluorescence spectrometry (XRF); FA: Fly ash; aEPA 9045D; bASTM C618; cASTM 
C150/C150M; dUSGS classification, **U.S. EPA Method 3050B; Hyphen: not applicable; NP: nonplastic; N/A: Not 
available
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Table 4.2 Composition of the mixtures with optimum moisture content (OMC) and maximum dry density (MMD) 

Note: *Dry weight basis; aASTM D698 

Component 
 

Soil  Class C Fly Ash  Class F Fly Ash 
 

Slag 
Loess Soil (%)* 

 

100 
 

87 84 74 54  87 84 74 54 
 

87 84 74 54 
Fly Ash or Slag Content (%)* 

 

- 
 

10 10 20 40  10 10 20 40 
 

10 10 20 40 
Type I/II Cement Content (%)* 

 

- 
 

3 6 6 6  3 6 6 6 
 

3 6 6 6 
Optimum Moisture (%)a 

 

16.2 
 

18.8 17 14.5 14  17.5 18 17 15.2 
 

18.5 18 17 18.7 
Max. Dry Density (kN/m3)a 

 

16.7 
 

16.6 16.6 17 16.7  16.5 16.6 16.8 17 
 

16.3 16.6 16.7 16.8 
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Figure 4.1 Grain size distribution of the materials used in the study  

0

20

40

60

80

100

0.0010.010.11

Pe
rc

en
t P

as
si

ng
 (%

)

Grain Size (mm)

Class C FA
Class F FA
Slag
Loess Soil



www.manaraa.com

130 

 
 

  

Figure 4.2 Effect of fly ash or slag content on (a) pH, and (b) electric conductivity. Note: In 
addition to fly ash or slag content, mixtures were prepared with 6% type I/II cement. Zero and 

hundred percent corresponds to soil and fly ash/slag only  
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Figure 4.3 Change in (a) Ca, (b) Mg, (c) S, (d) Mn, (e) Ba, and (f) Cr concentrations with type I/II cement content in WLT effluent 
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Figure 4.4 Change in (a) Ca, (b) Mg, (c) S, (d) Mn, (e) Ba, and (f) Cr concentrations with fly ash or slag content in WLT effluent
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Figure 4.5 Change in Total dissolved carbon (TDC) concentrations with (a) cement content, and 
(b) fly ash or slag content in WLT effluent. Note: Zero and hundred percent corresponds to soil 

and fly ash, slag only 

 
 
 
 
 
 

1

10

100

Class C FA Class F FA Slag

To
ta

l D
is

so
lv

ed
 C

ar
bo

n,
 T

D
C

 (m
g/

L)

(a) TDC 3% Type I/II Cement

6% Type I/II Cement

Loess Soil

100% Cement

1

10

100

0 20 40 60 80 100
To

ta
l D

is
so

lv
ed

 C
ar

bo
n,

 T
D

C
 (m

g/
L)

Fly Ash/Slag Content (%)

(b) TDC
Class C FA
Class F FA
Slag



www.manaraa.com

134 

 
 

 

 

Figure 4.6 Acid neutralizing capacity (ANC) of (a) soil, fly ashes, slag and cement, (b) class C 
fly ash mixtures, (c) class F fly ash mixtures, and (d) slag mixtures 
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Figure 4.7 pH dependent leaching of Ca in the leachates from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly ash 
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Figure 4.8 pH dependent leaching of Mg in the leachates from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly ash 
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Figure 4.9 pH dependent leaching of S in the leachates from (a) soil, cement, fly ashes and slag, 
(b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly ash 
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Figure 4.10 pH dependent leaching of Mn in the leachates from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly ash 
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Figure 4.11 pH dependent leaching of Ba in the leachates from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly ash 
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Figure 4.12 pH dependent leaching of Cr in the leachates from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly ash 
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Figure 4.13 pH dependent leaching of TDC in the leachates from (a) soil, cement, fly ashes 
and slag, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly 

ash 
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Figure 4.14 Ternary diagram for Barium, Manganese and Sulfate for (a) soil, fly ashes, slag 
and cement (b) soil-class C fly ash mixtures, (c) soil-class F fly ash mixtures, and (d) soil-slag 

mixtures 
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Figure 4.15 Schoeller diagrams for Ba, Ca, Cr, Mg, Mn and SO4-2 for (a) cement, pH=6.53 
(b) soil-class C fly ash mixtures, (c) soil-class F fly ash mixtures, and (d) soil-slag mixtures 
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Figure 4.16 Log activity of Ca2+ with pH in the effluent from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly ash 
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Figure 4.17 Log activity of SO42- with pH in the effluent from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly ash 
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Figure 4.18 Log activity of Mg2+ with pH in the effluent from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly ash 
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Figure 4.19 Log activity of Ba2+ with pH in the effluent from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly ash 
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Figure 4.20 Log activity of Mn2+ with pH in the effluent from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly ash 
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Figure 4.21 Log activity of CrO42- with pH in the effluent from (a) soil, cement, fly ashes and 
slag, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: FA- Fly ash 
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Figure 4.22 Log activity of CrO42- versus log activity of Ba2+.in leachates of a) soil, fly ashes, 
slag and cement, (b) Class C FA mixtures, (c) Class F FA mixtures, and (d) slag mixtures. Note: 

FA- Fly ash
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CHAPTER 5.    LEACHING CHARACTERISTICS OF RECYCLED CONCRETE 
AGGREGATES: EFFECT OF CARBONATION AND SATURATION 

A paper to be submitted to Journal of Environmental Management 

Masrur Mahedi and Bora Cetin 
 

5.1 Abstract 

The effects of carbonation on the pH dependent leaching characteristics of recycled 

concrete aggregates (RCA) were assessed in the current study. Quantitative comparisons of the 

leached constituents in the effluent of water leach tests (WLT), toxicity characteristic leaching 

procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) were performed. 

Depending on the RCA degree of carbonation, distinct pH dependent leaching patterns of Ca, Mg, 

Ba, Cr and SO4 were identified. The selection of an appropriate batch test was largely influenced 

by both carbonation and the constituent of potential concern. Liquid to solid (L/S) ratios and 

particle sizes showed diverse influences on the leaching behavior of carbonated and uncarbonated 

RCAs. At higher L/S ratio, leaching fingerprints of uncarbonated RCAs drifted towards the 

carbonated ones. Additionally, the effects of matric potentials on the leaching behavior of elements 

were investigated to access the pore-water chemistry. Geochemical modeling was performed to 

evaluate the leaching controlling mechanisms of the elements in the pH range of 2 to 13. Results 

indicated that, higher effluent concentrations were associated in the matric potential range of 2 kPa 

to 5 kPa. Except for Cr, the leaching of the elements from RCA was controlled by solubility.  

Keywords: Leaching, carbonation, matric potential, geochemical modeling, recycled 

concrete aggregate (RCA) 

5.2 Introduction 

Aggregates derived from natural sources have been traditionally used for pavement 

construction. In recent years, the mining of natural aggregates is increasely considerably due to 
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heightened demand rised by urbanization sprawls, overextraction, depletion of natural sources and 

subsequent increase in labor and extraction costs (Hoyos et al., 2011). Besides, construction and 

demolition wastes such as recycled concrete, reclaimed asphalt and recycled brick generated by 

rehabilitation projects and the consequent declination of landfill spacing have raised the 

importance to find an alternative way to reuse these materials (Arulrajah et al., 2014). The use of 

Recycled Concrete Aggregate (RCA) in pavement construction has proven to be a viable and cost 

effective solution in reducing the depletion of natural aggregates, construction costs and valuable 

landfill spacing. Demolition of existing structures such as concrete pavements, bridge, curb and 

gutter are the main sources of recycled crushed concrete aggregates which may also be generated 

from concrete over-runs associated with new constructions. In the United States approximately 

140 millon tons of RCA is generated annually and at least 41 states recycle their concrete 

pavements (Chen et al., 2012).  

RCA tends to be highly alkaline with pH values as high as 12.5, which could negatively 

impact surface water ecology and groundwater chemistry (Gupta et al., 2018). Even after the 

process of recycling, cement paste remained attached to the surface of the aggregates which is a 

potential source of leached constituents (Bestgen et al., 2016; Engelsen et al., 2009). Previous 

studies showed that RCA materials leach heavy and trace metals of environmental concerns 

(Butera et al., 2015; Chen et al., 2012; Engelsen et al., 2010; Galvín et al., 2012; Puthussery et al., 

2017; Van Praagh and Modin, 2016). Additionally, in most cases the initial mix design of RCA 

remains unknown which leads to the necessity of gauging their environmental suitability before 

any practical implications. Certain cement additives such as fly ash, slag, and kiln dust are often 

used in concrete which are known to leach metals of environmental concern (Cetin et al., 2012a; 

Daniels and Das, 2006; Zhang et al., 2016). Moreover, several studies have indicated that the pH 
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of RCA depends on the degree of carbonation reaction (Engelsen et al., 2009; Garavaglia and 

Caramuscio, 1994; Mulugeta et al., 2011; Sanchez et al., 2002). Carbonation occurs when the 

cement hydrated phases react with the atmospheric carbon dioxide and precipitate as calcite 

(Garrabrants et al., 2004a; Mulugeta et al., 2011). Thus, the pH of the RCA varies depending on 

source, service life of the original concrete structure, storage time and geographical location. Gupta 

et al. (2018) summarized that the pH of RCA could drop to approximately 8 over time from a pH 

value of 12.5 due to carbonation. Therefore, focusing the degree of carbonation, the leaching 

characteristics of RCA need to be investigated for a wide range of pH conditions. Engelsen et al. 

(2010, 2009) evaluated the pH-dependent release of elements from RCAs of varying degree of 

carbonation. This study collected partially carbonated RCAs from a single location, and the 

uncarbonated RCAs were prepared by crushing concrete cubes after 150 days and storing them in 

air tight containers. However, the pH-dependent leaching of RCA in naturally weathered 

conditions from diverse geographical locations remained unknown.   

Moreover, different standard batch tests such as water leach test (WLT), toxicity 

characteristic leaching procedure (TCLP), and synthetic precipitation leaching procedure (SPLP) 

are often used for a quick estimation of the leaching behavior of RCA. To the best of our 

knowledge, none of the previous studies has provided an assessment on the selection of appropriate 

test procedures based on RCA carbonation levels. Depending on the degree of carbonation, certain 

leach test could provide conservative results (higher leaching), while the same test may not be 

conservative for a different RCA carbonation level. Therefore, inconsistency within previous 

studies are often apparent (Bestgen et al., 2016). A comprehensive leaching assessment of RCA is 

required, encompassing widely implemented test procedures with varying degree of RCA 

carbonation. Besides, the effect of liquid to solid ratios (L/S) and particle sizes in leachate 
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extraction process from diversely carbonated RCAs need to be evaluated. According to Kosson et 

al. (2002) L/S ratio could also be considered as a surrogate parameter of time, and hence, probably 

the RCA degree of carbonation. Crucial physical and chemical properties influencing the leaching 

behavior of elements are related to RCA particle size distribution. According to Engelsen et al. 

(2009), more cement paste is available in finer RCA fractions which may control the leaching from 

RCA. Chen et al. (2012) claimed that carbonation of RCA is greater for finer particle sizes due to 

higher surface areas. Chen et al. (2012) reported lower pH values for smaller particle sizes of RCA. 

Therefore, it is important to investigate the influence of RCA particle size on the leaching behavior 

of elements. 

Furthermore, in all batch test procedures influent solutions are added in excess to the 

materials of interest. Test procedure varies based on extraction fluid type, L/S ratio, shaking 

period, shaking rate and filtration process. However, these methods may not be representative to 

the actual field conditions owing to the fact that, RCA may become saturated only during and/or 

after the precipitation events. In most cases, the RCA used in pavement foundation layers remains 

unsaturated with negative matric potentials. Yet, there is a continuous infiltration or seepage of 

water from the unsaturated RCAs towards the groundwater table. The leaching behavior of RCA 

in unsaturated flow and the effect of matric potential yet remained unexplored. Column leach test 

has been designed to access the impact on groundwater under percolating condition (LEAF, 2019). 

However, in column leach test a continuous flow of water is injected into the specimen which 

makes the samples saturated. Laboratory and field lysimeters could possibly represent the 

unsaturated conditions of the RCA, but the test methodology does not provide the matric potential 

measurements which is the most important parameter in unsaturated conditions.  
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The objectives of this research study were to (1) investigate the pH dependent leaching 

behaviors of RCA with a varying degree of carbonation, (2) provide quantitative comparisons 

between different standard batch tests with an assessment on the selection of appropriate methods 

targeting the RCA carbonation level, (3) access the effect of L:S ratio on the leaching behavior of 

diversely carbonated RCA, (4) evaluate the influence of RCA particle sizes on the leaching 

behavior of constituents, and (5) identify the effect of matric potential on the leaching 

characteristics of RCA. To accomplish these goals, six different RCAs were collected from 3 

different states in the U.S. and one RCA was prepared in laboratory condition. A series of WLT, 

TCLP, SPLP and pH dependent leach tests were performed by implementing different L:S ratios 

and particle sizes. The physical properties, chemical properties and the degree of carbonation of 

the RCAs were determined by particle size distribution, Proctor compaction, X-ray diffraction, X-

ray fluorescence, acid digestion and thermogravimetric analyses. Pressure cell techinque was 

employed to extract the RCA pore solutions at known matric potentials. This study analyzed and 

reported the effluent pH, electrical conductivity (EC), alkalinity and leached Ca, Mg, Ba, Cr and 

SO4 concentrations from all the followed test procedures. Furthermore, the leaching mechanisms 

of the elements from the RCAs were determined via use of geochemical modeling program Visual 

MINTEQA2.  

5.3 Materials 

Seven different RCA batches were collected for the test program of this study. Two RCA 

batches were collected from Texas (TX1 and TX2), three from Iowa (IA1, IA2 and B), one from 

Minnesota (MN) and one RCA (LAB) was prepared in the laboratory. The RCA-TX1 and RCA-

TX2 were stockpiled for several years in concrete recycling facilities located in Dallas and Fort 

Worth. The RCA-IA1 and RCA-IA2 were collected from Ames and Ankeny in Iowa. RCA-IA1 

was taken from a pile stock for 3 months, whereas RCA-IA2 was collected from the production 
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line. The third RCA from Iowa was prepared by crushing the building demolition waste with a jaw 

crusher. The RCA from Minnesota was collected from an old pavement demolished for 

reconstruction. Laboratory based RCA were prepared by crushing waste concrete cylinders from 

ISU PCC lab and exposing them to the atmosphere for more than a year. The mix design of the 

laboratory made RCA was unknown as it ought to be in actual conditions.  

The RCA used in this study primarily composed of sand to gravel size particles. The 

laboratory processed RCAs (RCA-B and RCA-LAB) were crushed and grounded to a particle size 

less than 25.4 mm. The particle size distribution of the RCA materials used in this study are 

presented in Figure 5.1. Except for RCA-IA1 and RCA-TX2, all the RCA had more than 80% 

gravel size particles. RCA-IA1 was predominated by sand size particles (51.1%), whereas the 

gravel content for RCA-TX2 was 68.8%. The compaction characteristics of the materials were 

determined by implementing standard proctor compaction energy. The optimum moisture content 

and maximum dry density of the materials varied in the range of 10.9% to 14.4% and 18.3 kN/m3 

to 19.7 kN/m3, respectively. All the physical properties of the RCA materials are tabulated in Table 

5.1. The RCA-MN, TX1, TX2 and LAB were classified as poorly graded gravel (GP) in 

accordance to USCS classification system. RCA-IA1 and RCA-B were classified as well graded 

gravel (GW), whereas the USGS classification of RCA-IA1 was poorly graded sand (SP). 

According to AASHTO classification system, all the RCAs were classified as A-1-a. 

The chemical compositions of the RCAs were determined by X-ray fluorescence (XRF) 

spectrometry analyses. The oxide contents of the RCAs are presented in Table 5.2. All the RCA 

materials were dominated by silica (SiO2) in the range of 34.7% to 47.7% by weight. The lime 

(CaO) content varied in the range of 22% to 34.9%. The highest amount of CaO was found in 

RCA-TX1, while the minimum CaO content was in RCA-B. The RCAs also contained varying 
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amount of alumina (Al2O3) and iron oxide (Fe2O3) in the range of 1.7% to 5.8% and 1.2% to 3%, 

respectively. Additionally, the Ca, Mg, Ba and Cr contents of the RCAs were determined by 

implementing acid digestion following the U.S. EPA method 3050B and are reported in Table 5.2. 

A representative 1 g RCA sample was digested with varying amount of concentrated trace metal 

grade nitric acid (HNO3) and 30% hydrogen peroxide (H2O2). Heating at 95±5 °C temperature 

and refluxing were involved as per the standard requirements to dissolve all the elements that could 

become environmentally available. The total elemental concentrations of the RCA were in general 

agreement with XRF analyses. From acid digestion, the maximum and minimum Ca content were 

also determined in RCA-TX1 and RCA-B, respectively. The Cr content of the RCAs varied within 

a narrow range of 21.3 mg/kg to 27.9 mg/kg.  

An X-ray diffraction (XRD) spectrometry analyses were conducted to identify the 

mineralogical compositions of the RCAs used in this study. Table 5.3 lists the RCA mineral phases 

recognized by XRD analyses. As indicated in Table 5.3, calcite and dolomite were identified in all 

the RCAs, regardless their source, aging and collection procedures. Except for RCA-TX1 and 

TX2, portlandite was identified in every RCAs. Therefore, it was anticipated that RCAs from 

Texas were the most carbonated ones. Besides, ettringite was identified in RCA-MN and IA2. 

Albite and anorthite (feldspars) were recognized in RCA-IA1, B and LAB which could have 

contributed by the aggregates in RCAs. As showed in Table 5.2, the pH values of the RCAs were 

significantly lower compared to the pH of less aged RCA-LAB (pH = 10.5). The lowest pH of 

RCA-TX1 indicated its higher carbonation level. The carbonation levels of the RCAs were further 

verified by thermogravimetric analyses (TGA) as shown in Figure 5.2. 
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5.4 Methods 

5.4.1 Laboratory Sample Preparation 

The laboratory sample preparation started by dividing the collected RCA materials into 

small batches based on the quartering method following ASTM C702. The materials were further 

reduced to 2 kg small sub-batches by implementing alternative quartering method. The sub-batch 

RCA materials were oven dried at a temperature 60 °C for at least 24 hours. The dry RCAs were 

then subjected to sieve analyses and divided into particle size fractions of 25.4-9.51 mm, 9.5-4.76 

mm, 4.7-2.38 mm, 2.38-1.19 mm, 1.19-0.595 mm, 0.595-0.297 mm, 0.297-0.149 mm and 0.149-

0.074 mm. For gravel size particles (25.4-9.51 mm and 9.51-4.76 mm), further crushing was 

performed by an electric jack hammer. An additional size reduction of the sieved fractions of 25.4-

9.51 mm, 9.51-4.76 mm, 4.76-2.38 mm, 2.38-1.19 mm was performed by agate mortar to get the 

test sample sizes of less than 2 mm. The reduced size test samples (< 2 mm) were stored in air-

tight bags for leaching tests. A representative RCA sample was prepared by adding the appropriate 

amount of materials from each reduced size fractions according to the gradation characteristics 

determined by sieve analysis. Four different standard leaching tests methods were implemented 

using the reduced 2 mm RCA samples. All of the leach test samples were prepared on oven dry 

weight basis. In addition, leaching potential of elements at different saturation conditions (matric 

potential) was investigated by exploiting the water retention characteristics of the RCA materials. 

5.4.2 Batch Water Leach Test  

Batch water leach tests (WLT) were performed following the standard test method 

designated by ASTM D3987. To investigate the influence of diverse field conditions, samples 

were prepared at four different (5:1, 10:1, 15:1 and 20:1) liquid to solid (L/S) ratios. According to 

Kosson et al. (2002) L/S ratio could also be considered as a surrogate parameter of time, and 

release of metals is weakly related to L/S, when L/S ratio is in between 2:1 and 10:1. Additionally, 
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L/S ratio of 10:1 is widely implemented, since the release of elements at L/S of 10:1 is solubility 

controlled over the range of pH relevant to the field conditions (Kosson et al., 2002). Therefore, 

samples were prepared at L/S ratio of 5:1 (between 2:1 and 10:1), 10:1, and at two L/S values 

higher than 10:1 (15:1 and 20:1). Deionized water was used as an influent solution for the sample 

preparation. Samples were rotated end-over-end fashion for 18±0.25 hours at a rotation rate of 29 

rpm. After rotation, pH and electric conductivity of the supernatant fluid were measured. Next, the 

solution was pressure filtered through membrane disk filter papers (0.2-μm pore size and 25 mm 

diameter) into acid washed 50 mL centrifuged tubes. One fraction of extract was acidified with 

10% trace metal grade nitric acid (HNO3) to a pH less than 2 and stored at 4°C temperature for 

metal analyses. Another not-acidified aliquot of the leachate was immediately subjected to 

alkalinity and sulfate measurements. 

Furthermore, the impacts of RCA particles on the leaching of elements were evaluated by 

batch water leach tests. Crucial physical and chemical properties influencing the leaching behavior 

of elements from RCA are related to RCA particle size distribution (Bestgen et al., 2016). 

According to Engelsen et al. (2009), more cement paste is available in finer RCA fractions which 

may control the leaching from RCA. Additionally, Chen et al. (2012) claimed that carbonation of 

RCA is greater for finer particle sizes due to higher surface areas. Chen et al. (2012) reported lower 

pH values for smaller particle sizes of RCA. Therefore, it is important to investigate the influence 

of RCA particle size on the leaching behavior of element. The RCA particle size distribution is 

largely dependent on the crushing procedure, crushing location (in plant or onsite), RCA source 

(building or pavement demolition) and storage conditions (stockpile or container). In this study 

the leaching behavior of 8 different (25.4-9.51 mm, 9.5-4.76 mm, 4.7-2.38 mm, 2.38-1.19 mm, 
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1.19-0.595 mm, 0.595-0.297 mm, 0.297-0.149 mm and 0.149-0.074 mm) RCA size fractions were 

evaluated through WLT.  

5.4.3 TCLP Leach Test 

Toxicity characteristic leaching procedure (TCLP) designated by the U.S. EPA method 

1311 was followed to access the leaching behavior of RCA at landfill containment conditions. A 

liquid to solid ratio of 20:1 was implemented following the standard requirement. The influent 

solution for TCLP was prepared by mixing 64.3 mL 1 N sodium hydroxide (NaOH) and 5.7 mL 

glacial acetic acid (CH3COOH) into deionized water and diluting the solution to 1 liter. The 

prepared influent solution had a pH of 4.93±0.05. Then, the RCA-influent mixture was agitated 

end-to-end at a rotation rate of 28 rpm for 18±2 hours. After agitation, the pH and conductivity of 

the effluent solution were measured. Finally, vacuum filtration technique was implemented using 

0.7-μm borosilicate glass fiber filters. An aliquot of sample was acidified and stored for metal 

analysis as described in the WLT section. Another non-acidified portion of filtered sample was 

used for alkalinity and sulfate measurements.   

5.4.4 SPLP Leach Test  

To investigate the leaching behavior of RCA in simulated acid rain conditions, SPLP test 

procedure designated by the U.S. EPA method 1312 was performed. The influent solution for 

SPLP was prepared by mixing reagent grade sulfuric and nitric acid (60%/40% by weight) into 

deionized water and diluting the solution to a pH of 5±0.05. A constant liquid to solid ratio of 20:1 

was used for leachate extraction. A similar agitation, filtration and storage procedure as described 

in the TCLP section was implemented for SPLP sample preparation.  

5.4.5 pH-dependent Leach Test 

The pH dependent leach tests were conducted on RCAs following the U.S. EPA Method 

1313 to investigate the influence of pH on the leaching behavior of elements. Samples were 
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prepared at 9 different target pH values of 2, 4, 5.5, 7, 8, 9, 10.5, 12 and 13 (±0.5). A constant L/S 

ratio of 10:1 was implemented for the leachate extraction. The target sample pH values were 

achieved by adding appropriate amounts of 1 N potassium hydroxide (KOH) or 2 N trace metal 

grade nitric acid (HNO3) into deionized water. The required amounts of acid or base, and deionized 

water for a target pH were predetermined by exploring the acid neutralization capacity (ANC) of 

the RCAs. To investigate the ANC of the RCAs, varying amounts of acid or base in regular 

intervals, and water was added to the RCA samples at a L/S ratio of 10:1. The mixtures were then 

agitated end-over-end at a rotation rate of 28 rpm for 48±2 hours. After agitation, the pH of the 

supernatant was measured to quantify the acid/base buffering capacity of the RCAs. For the final 

pH-dependent leach test samples, similar rotation frequency and agitation period were 

implemented. Following shaking, the pH and electrical conductivity of the samples were 

determined. Finally, samples were filtered and stored for further analyses following the same 

method described in the WLT section.  

5.4.6 Leaching at Unsaturated Conditions 

To evaluate the leaching behaviors of metals at different saturated conditions, a pressure 

cell technique was adopted. Test size (< 2 mm) RCAs were compacted into 76.2 mm diameter and 

76.2 mm height cores at optimum moisture content by implementing standard Proctor compaction 

energy. A polyethylene membrane was provided to avoid undue contact between RCA particles 

and the core metal wall. To reduce contamination of the RCA samples while compacting, the 

compaction hammer was covered with cloth and polyethylene layers. Upon compaction, the 

samples were placed in separate saturation chambers with deionized water and vacuum saturation 

was applied for 48 hours. The saturated cores were then placed in pressure cells.  

A schematic of a pressure cell with RCA core is shown in Figure 5.3. The pressure cells 

were made of acrylic with a leachate collection funnel and a graduated cylinder. In each cell, a 
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saturated 0.45 µm pore size and 90 mm diameter nylon membrane filter paper was placed on the 

perforated bottom plate, upon which saturated RCA core was placed. The cells were made airtight 

by using vacuum grease and placing O-rings at the top and bottom. Next, eight different matric 

potentials were induced in RCA cores by applying air pressures of 0.37, 1.96, 2.94, 4.91, 9.81, 

19.61, 32.36 and 49.03 kPa. Smaller matric potentials were selected, since the RCA materials had 

inferior water retention capacities due to minor fine contents (Table 5.1). Precise measurements of 

matric potentials were ensured by using a hand-held digital manometer. Each pressure was 

sustained for 24 hours except for 32.36 and 49.03 kPa, where the duration of sustained pressure 

was 48 hours. Due to applied pressure, a hydraulic gradient was induced in the RCA cores, since 

the bottom of the core was exposed to atmospheric condition through the filter paper and the 

perforated bottom plate. Therefore, to reach an equilibrium with the induced suctions (matric 

potentials), RCA cores drained pore solution which was collected into a 100 mL graduated 

cylinder. The weight and volume measurements of the drainage were performed for the 

investigation of water retention characteristics of the RCAs. Additionally, the drainage was 

pressure filtered through 0.2-µm pore size membrane filter papers and stored in centrifuge tubes 

by acidifying with 10% nitric acid at a pH lower than 2. Before acidifying the samples, pH and 

electric conductivity of the drainage were also quantified. To avoid the cross contamination 

between the leachates, a new filter paper, and acid washed leachate collection funnels and 

graduated cylinders were used for each pressure cycles. Washing the bottom plate was not possible 

since the bottom plate was firmly attached on a wooden table. However, the bottom plate was 

sprayed with 2% trace metal grade nitric acid (HNO3) solution and subsequently washed with 

deionized water.  
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5.4.7 Chemical Analyses 

Inductively coupled plasma optical emission spectroscopy (ICP-OES) (Shimadzu, Japan) 

was used to determine the effluent concentrations of major elements (Ca, Mg, Al, Ba and Fe), 

common metals (Cu, Mn and Zn) and oxyanion Cr. Commercially produced known concentrations 

of multi-elemental standards were used to calibrate the ICP. Multiple calibration curves were 

prepared for pH-dependent leach test samples due to a wide range of metal concentrations in the 

eluates. The calibration curves were verified by running check standards and blanks at every 9 

samples and at the end of an analysis session. In this study only the leached concentrations of Ca, 

Mg, Ba and Cr are reported, discussing the other elements elsewhere. The minimum detection 

limits for Ca, Mg, Ba and Cr were 0.002 mg/L, 0.001 mg/L, 0.0004 mg/L and 0.005 mg/L, 

respectively.  

The effluent concentrations of sulfate (SO4) in non-acidified samples were quantified by 

the SEAL AQ2 analyzer, implementing the standard method designated by the U.S. EPA method 

No: EPA 123-A. The instrument was calibrated by anhydrous sodium sulfate (Na2SO4) standard 

solutions. A new calibration curve was generated for every analysis session. The calibration curve 

was verified by running check standard of 20 mg/L and blank solution at every 15 analyses. The 

method detection limits for the sulfate was 1 mg SO4/L.   

The alkalinity of the non-acidified effluent was determined through titration by 0.035 N 

standard sulfuric acid (H2SO4) solution. Phenolphthalein and bromcresol green-methyl red 

indicators were used to determine phenolphthalein and methyl orange alkalinity, respectively. The 

solution turned into pink when phenolphthalein indicator was added. Acid was added dropwise 

into the solution until it became colorless. Next, bromcresol green-methyl red indicators was used 

and titration was performed until the solution turned into pink. The RCA samples showed very 
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little phenolphthalein alkalinity compared to the methyl orange alkalinity. Therefore, only the 

methyl orange alkalinity is reported in this study and indicated as the alkalinity of the RCA eluates.  

5.4.8 Geochemical Modeling 

Two key equilibrium mechanisms, solubility and sorption are recognized to control the 

leaching of constituents from the waste materials. Solubility controls the leaching when the 

effluent is saturated with respect to the constituent species and is known to be reliant on the 

dissolution/precipitation of oxide and hydroxide minerals (Komonweeraket et al., 2015a). 

Constituents with sorption affinity to the active sites such as solid surfaces, organic matter, oxides 

and oxyhydroxides are controlled by the sorption process (McBride, 1994). In this study, 

geochemical modeling was performed to investigate whether the leaching of elements was 

controlled by solubility. Geochemical model program Visual MINTEQA2, developed by the U.S. 

EPA was implemented. The pH and effluent concentrations from pH-dependent leach tests were 

considered as the input data. An equilibrium with the atmospheric carbon dioxide at 25 °C was 

assumed, since the filtration was performed in a laboratory setting. Aqueous phase equilibrium 

concentrations of the constituents, constituents’ activities and saturation indices of the leachate 

with respect to MINTEQA2 predicted minerals were calculated. The pH-log activity diagrams for 

each of the elements were generated along with the solubility line of the MINTEQA2 predicted 

mineral phases. The activities of a constituent fell in close proximity to the solubility line of the 

constituent minerals, if the leaching was controlled by solubility (Garavaglia and Caramuscio, 

1994).  

5.5 Results and Discussions 

5.5.1 Influence of L/S Ratio on the Leaching Behavior 

The influence of liquid to solid ratio (L/S) on the leaching behavior of elements is 

illustrated in Figure 5.4. As indicated in Figure 5.4(a), except for RCA-LAB, the effluent 
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concentrations of Ca decreased with an increase of L/S ratio. For laboratory made RCA, Ca 

concentrations remained unchanged. The leached concentrations of Ca from RCA-B did not 

change significantly up to the L/S ratio of 10 but decreased gradually at higher L/S values (15 and 

20). Among all the RCAs used in this study RCA-LAB and B were the least carbonated ones. For 

moderate to highly carbonated RCAs, Ca concentrations decreased progressively with the increase 

of L/S ratio. Garrabrants et al. (2004) also reported that leached concentrations of Ca from 

carbonated cement mortar decreased with an increase in L/S ratio. An increase in L/S ratio 

increased the liquid content of WLT, which diluted the leachate and subsequently decreased 

effluent Ca concentrations. Similar behavior was observed for effluent pH and electrical 

conductivity (EC). The pH and EC values decreased at an increased L/S ratio (Table 5.3). From 

TGA analyses, the RCAs in terms of descending carbonation levels were LAB, B, MN, IA2, IA1, 

TX2 and TX1. The leached concentrations of Ca, effluent pH and EC also followed the same order. 

In contrast, the leached concentrations of Mg fluctuated with L/S ratio (Figure 5.4b). However, it 

could be concluded that Mg concentrations were inclined to an increasing trend with the increase 

in L/S ratio. With the increase in L/S ratio, effluent pH decreased which could increase the leached 

concentrations of Mg. Figure 5.4(c) represents the variation of effluent alkalinity with the increase 

in L/S ratio. Following the leaching of Ca, effluent alkalinity decreased with an increase in L/S 

ratio. Moreover, the alkalinity of the RCAs followed the same order of carbonation determined 

from TGA analyses. The eluates of RCA-LAB were the most alkaline ones, whereas the RCA-

TX1 showed the least alkalinity. This was expected, since the carbonates of Ca and Mg are known 

to be insoluble at alkaline pH (pH > 10) conditions (Komonweeraket et al., 2015b).  

Leached concentration of Ba and Cr decreased noticeably with the increase in L/S ratio. 

This finding is coherent with previous studies conducted on RCA, concrete demolition waste and 



www.manaraa.com

166 

 
 

bottom ash (Bestgen et al., 2016; Di Gianfilippo et al., 2016; Van Praagh and Modin, 2016). 

Phoungthong et al. (2016) indicated that, both the dilution and solubility of the heavy metals are 

affected by L/S ratio, which eventually change the effluent metal concentrations. It is well known 

that Ba and Cr follow amphoteric leaching pattern with elevated concentrations at both acidic and 

alkaline conditions, and the minimum at neutral/near neutral pH values. With the increase in L/S 

ratio, effluent pH decreased (Table 5.4) which led to an overall reduction in effluent Ba and Cr 

concentrations. In case of SO4, diverse leaching behaviors with respect to L/S ratio was observed. 

For aged RCAs (TX1 and TX2), SO4 concentration decreased with an increase in L/S ratio. In 

contrast, less carbonated RCAs leached higher concentrations SO4 at higher L/S ratios. It was 

anticipated that dilution affected the leaching of SO4 from aged RCAs, whereas 

sorption/desorption controlled SO4 leaching from the less carbonated RCAs. The decrease in pH 

with an increase in L/S ratio led to the desorption of SO4 from calcite surface and increased the 

effluent concentrations.  

5.5.2 Effect of Carbonation on the Leaching Potentials 

To understand the effect of carbonation on the leaching of elements and for a quantitative 

comparison of leachate quality, Schoeller diagrams at four different L/S ratios were utilized and 

are presented in Figure 5.5. The milliequivalent concentrations were calculated assuming the Ca2+, 

Mg2+, Ba2+, Cr6+ and SO42- oxidation states. Cr is a redox sensitive element and could be in Cr (III) 

or Cr (IV) oxidation states. However, Cr (IV) was assumed in this study because of the higher 

natural pH (pH > 11) of the RCAs. Previous studies reported oxidized Cr (IV) at higher pH 

conditions (Bestgen et al., 2016; Quina et al., 2009; Zhang et al., 2016). For simplicity, alkalinity 

of the leachates was represented by CO32-, since alkalinity was reported as equivalent CaCO3 in 

this study.  
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As indicated in Figure 5.5, the RCAs could be sorted into 3 groups based on their 

carbonation levels such as highly carbonated (TX1 and TX2), moderately carbonated (MN, IA1 

and IA2) and least carbonated (B and LAB). Least carbonated RCAs showed similar leaching 

fingerprints with almost parallel lines in all L/S ratios. Significant variations on the leaching of 

Mg were observed, where the lines joining Cr6+ and Mg2+ became oblique. This is due to higher 

leaching potential of Mg from RCA-B compared to other RCAs. As indicated in Table 5.2, higher 

MgO content and elemental concentration of Mg were determined in RCA-B by XRF and total 

elemental analysis, respectively. Lines joining Ca2+ and CO32- were almost horizontal in all L/S 

ratios. This signifies that for the least carbonated RCAs, alkalinity mostly resulted from the 

dissolution of major calcium minerals such as portlandite, gypsum and calcite. However, the 

concentrations of SO42- were well below the concentrations of Ca2+. Therefore, dissolution of 

gypsum may not be the primary contributor for the leaching of Ca2+ from the least carbonated 

RCAs. The slopes (positive or negative) of the lines joining Ba2+ and Cr6+ were close to zero, 

which indicated possible interdependent leaching of these two elements. For moderately 

carbonated RCAs, almost identical leachate chemistry was identified by the lines overlapping on 

each other. RCA-MN leached higher Cr6+ compared to other two RCAs in this group. Moderately 

carbonated RCAs showed distinct behavior from the least carbonated ones in terms of alkalinity 

and the leaching of Ca2+. The lines joining Ca2+ and CO32- concentrations had positive slopes, 

indicating that the contribution of other minerals to alkalinity became significant with an increase 

in RCA carbonation level.  

The highly carbonated RCAs (TX1 and TX2) showed unique leaching behavior with 

relatively lower concentrations of Ca2+ and alkalinity. Higher amounts of SO42- and Cr6+ leached 

from highly carbonated RCAs compared to the moderate and least carbonated ones. Previous 



www.manaraa.com

168 

 
 

studies showed enhanced leaching of SO42- and Cr from carbonated materials (Kosson et al., 2014; 

Mulugeta et al., 2011). The leached concentrations of Mg2+ from the most carbonated RCA-TX1 

were the highest in all L/S ratios. The slopes of the lines joining Ca2+ and CO32- were negative, 

whereas the molar ratios of Ca2+/SO42- were close to 1, especially for TX1. These signify that the 

leaching of Ca2+ from highly carbonated RCAs were dominated by the dissolution of gypsum 

and/or anhydrite. Additionally, the leached concentrations of Ba2+ were lower. Therefore, it was 

anticipated that leaching of Ba2+ from highly carbonated RCAs was controlled by poorly soluble 

witherite rather than barite. Additionally, at higher pH with the presence of SO42-, Ba2+ precipitates 

as barite(Kosson et al., 2014). Moreover, for highly carbonated RCAs, Ca2+/CO32- molar ratios 

decreased with the increase in L/S ratios. In contrast, Ca2+/CO32- molar ratios consistently 

increased with L/S ratios for less carbonated RCAs. With the increase in L/S ratio, leaching 

fingerprints of less carbonated RCAs drifted toward the highly carbonated ones. Thus, as seen 

from Figure 5.5(d), the differences in eluate cation and anion concentrations decreased 

significantly at L/S of 20, irrespective to the degree of carbonations of the RCAs.  

5.5.3 Influence of Particle Size on the Leaching Behavior 

It was found that the RCA particle sizes had significant influences on the effluent pH, 

electrical conductivity (EC), alkalinity and elemental concentrations. As indicated in Table 5.5, 

the pH and EC decreased with the increase in RCA particle size. For least carbonated RCA-B and 

LAB, maximum pH was found at 0.074 mm of particle sizes, whereas for carbonated RCAs the 

highest pH values were found in between 1.19 mm to 0.149 mm. In a few cases an increase in pH 

was observed for the 2.38 mm particle size, which could have happened due to size reductions of 

RCA particles to the test size (2 mm) as described in the method sections. The leached 

concentrations of Ca and eluate alkalinity followed the same pattern (Figure 5.6) as the pH. With 

the increase in RCA particle size, leached Ca concentrations and alkalinity decreased. With few 



www.manaraa.com

169 

 
 

exceptions, the maximum Ca concentrations and alkalinity were found for 1.19 mm to 0.149 mm 

particle sizes. Leached Mg concentrations fluctuated with RCA particle sizes (Figure 5.6b). The 

highest concentrations of Mg were leached from larger particle sizes of RCA-TX1. 

Additionally, Figure 5.6d-e shows that the effluent concentrations of Ba and Cr also 

decreased at higher particle sizes. Larger particle sizes yielded lower pH which decreased Ba and 

Cr concentrations. Additionally, carbonated RCAs (TX1 and TX2) leached lower concentrations 

of Ba but higher Cr concentrations. As presented in Figure 5.6f, except for RCA-B, SO4 

concentrations also decreased with the particle sizes of the RCAs. It was speculated that the 

leaching of SO4 from RCAs was mostly from the hydrated cement paste. Engelsen et al. (2009)  

indicated that more cement paste was available in finer fractions of RCA particles.  

5.5.4 Factors Effecting Eluate Properties and Leaching 

The U.S. EPA does not provide any specific guideline for effluent Ca concentration. 

However, Ca is one of the most abundant elements present in cementitious products such as 

cement, mortar, concrete and different types of fly ash, bottom ash and blast furnace slags. The 

presence of Ca critically influences the effluent chemistry, and subsequently the leaching of the 

poisonous elements. Therefore, an attempt was made to access the influence of Ca on the effluent 

pH, EC, alkalinity and leaching of Ba and Cr. The results from all the WLT performed at different 

L/S ratios and particle sizes were considered for the evaluation purpose.  

As shown in Figure 5.7(a), the pH of the effluent consistently increased with an increase 

in Ca concentrations. Dissociation of remaining Ca(OH)2 in RCAs increased the effluent pH and 

Ca concentration significantly (Bin-Shafique et al., 2006). From XRD analyses portlandite was 

detected in all the RCAs, except for highly carbonated TX1 and TX2 (Table 5.3). Thus, RCA-TX1 

and TX2 resulted lower pH values with minor dependence on effluent Ca concentrations. 

Similarly, the EC and alkalinity of the solutions were largely controlled by leached Ca 
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concentrations (Figure 5.7b-c). Both the EC and alkalinity considerably increased with the increase 

in effluent Ca concentrations. As seen in Figure 5.7(c), the Alkalinity values of RCA-TX1 were 

aligned with Ca to alkalinity ratio of 1:1, whereas alkalinity of the other RCAs were closely 

associated to 1:2 line. This indicated that the alkalinity of TX1 could be controlled by calcium 

carbonate, while calcium bicarbonate may have controlled the alkalinity of other RCAs.  

5 5.7(d) shows the influence of alkalinity on the leaching behavior of Ba. Leached 

concentrations of Ba increased with the increase in alkalinity. This signifies that carbonate 

minerals controlled the leaching of Ba from RCA materials. Previous studies reported that at 

strongly alkaline conditions (pH > 10) Ba-carbonate mineral, witherite controls the leaching of Ba 

(Komonweeraket et al., 2015a; Mudd et al., 2004). Moreover, the leached concentrations of Cr 

were influenced positively by the solution Ca concentrations (Figure 5.7e). For highly carbonated 

RCAs, the leaching of Cr was more sensitive with respect to Ca. Leisinger et al. (2010) indicated 

that chromate concentrations increased with an increased in Ca concentrations. It is well known 

that for alkaline waste materials, CrO42- is the relevant oxidation of Cr (Quina et al., 2009; Zhang 

et al., 2016). CrO42- can substitute for SO42- and may incorporate to ettringite as CrO42--ettringite 

solid solution (S/S) (Leisinger et al., 2010). It was anticipated that dissolution of CrO42--ettringite 

S/S was the most probable reason of enhanced Cr leaching with Ca. This assumption was further 

stressed by Figure 5.7(f), indicating that Cr concentrations also increased with an increase in 

solution SO4 concentrations. Quina et al. (2009) indicated that SO4 reduced the sorption of Cr (VI) 

in ettringite. Therefore, a partial replacement (loosely bonded) of SO42- by CrO42- was possible and 

dissolution of such phases increased the solution Ca, Cr and SO4 concentrations.  

5.5.5 Method Comparisons 

To access the leaching potentials of RCA in different test conditions, ternary phase 

diagrams of leached metal concentrations, alkalinity and SO4 in WLT, TCLP and SPLP were 
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plotted. Effluent concentration of a metal (or SO4/alkalinity) in a test method was normalized as 

the percent fraction of the total leached concentrations of that metal (or SO4/alkalinity) in all three 

leach tests. For quantitative comparison, effluent pH, EC, alkalinity, SO4 and leached metal 

concentrations in WLT, TCLP and SPLP are provided in Table 5.6. As shown in Figure 5.8(a), 

leached concentrations of Ca were always higher in TCLP effluents. Ca concentrations in TCLP 

were 1 to 10 times higher compared to WLT, and 2 to 15 times higher than the SPLP 

concentrations. This observation is in agreement with a previous study conducted on RCA 

materials (Bestgen et al., 2016). Additionally, the leaching of Ca in different test methods was 

greatly influenced by the degree of carbonation of RCA particles. Less carbonated RCAs leached 

higher Ca in WLT, whereas highly carbonated RCAs showed higher Ca in TCLP effluents. 

Solution Ca concentrations were comparable in TCLP and WLT for less carbonated ones (B and 

LAB). For other highly carbonated RCAs, WLT and SPLP effluent Ca concentrations were 

equivalent.  

Mg was poorly leached in WLT, regardless of the carbonation levels of the RCAs (Figure 

5.8b). Least carbonated RCAs (B and LAB) leached the highest amount of Mg in SPLP solution. 

For elevated carbonation levels, TCLP effluents provided the highest leaching of Mg. In the case 

of alkalinity, TCLP effluents were found to be highly alkaline followed by WLT and SPLP 

effluents (Figure 5.8c). TCLP alkalinity decreased as the carbonation level of the RCAs decreased, 

whereas the observed trend was completely opposite for WLT and SPLP effluent. WLT and SPLP 

effluent alkalinity decreased with an increase in RCA carbonation. Among these three test 

methods, TCLP effluent was the most acidic one which degraded the calcite in RCA vigorously. 

Thus, the release of carbonate and bicarbonate anions in the solution increase the acid buffering 

capacity of the TCLP effluents. With the decrease in carbonation, portlandite became readily 
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available in neutralizing protons in TCLP influent. Neutralization of the protons produced water 

which did not contribute to effluent alkalinity. The alkalinity of SPLP effluents decreased with 

RCA carbonation levels, since the SPLP influent is not a buffer solution as TCLP influent. WLT 

effluent alkalinity decreased with RCA carbonation due to the insoluble nature of calcite in water. 

Additionally, the WLT-TCLP-SPLP phase diagram of Ca and alkalinity suggested the same 

carbonation order of the RCAs determined by TGA analyses.  

 Figure 5.8(d) indicates that, except for RCA-TX1 the highest amount of Ba leached into 

WLT effluent. The Ba concentrations in WLT effluent were approximately twice compared to 

SPLP effluent concentrations and 1 to 5 times higher compared to TCLP. It was theorized that 

relatively higher pH (Table 5.6) of WLT effluents had increased the leached Ba concentrations 

significantly. In few cases (MN, IA1 and IA2) SPLP effluent pH values were slightly larger 

compared to WLT pH values, yet Ba concentrations were higher in WLT. This could have 

happened due to higher ionic strength of WLT effluents (Cetin et al., 2012a). The EC provided an 

indication of effluent ionic strength, and higher EC were determined in WLT (Gräfe et al., 2009). 

Additionally, for RCA-TX1, the maximum Ba concentration was found in TCLP effluent followed 

by WLT and SPLP concentrations. TCLP and SPLP effluent Ba concentrations were found to be 

comparable for moderately carbonated RCAs (IA1, IA2 and MN). RCA-LAB leached the highest 

amount of Ba in WLT effluent because of its largest pH in all leaching methods (Table 5.6).  

In case of Cr and SO4, as seen in Figure 5.8(e-f), the higher concentrations were found in 

WLT effluent for highly carbonated RCAs (TX1 and TX2), whereas, leached concentrations were 

the highest in TCLP effluents for moderately to least carbonated ones. Except for highly 

carbonated RCAs (TX1 and TX2), the WLT and SPLP effluent concentrations of Cr and SO4 were 

equivalent. Additionally, Cr and SO4 concentrations were inclined to increase with increased 
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carbonation in WLT effluent. However, this behavior was reverse in TCLP effluents. The 

leachability of Cr and SO4 in SPLP effluents varied within a narrow range (0.2 line) due to the 

presence of SO4 in influent solution as sulfuric acid.  

5.5.6 pH dependent Leaching Behavior 

To access the pH buffering ability, acid/base neutralization capacities of the RCAs were 

determined. Figure 5.9(a) shows the ANC of the RCAs used in this study. The negative values of 

acid equivalents indicated the addition of base. As seen in Figure 5.9(a), depending on the degree 

of carbonation of the RCAs, significant differences in the shape of ANC curves were observed. 

Highly carbonated RCA-TX1 showed lower acid neutralization capabilities in the pH range of 12 

to 6. In contrast, less carbonated RCAs showed higher resistance to pH changes in this zone, 

requiring more acid for the same pH adjustment. The difference was attributed to the carbonation 

of the RCA and subsequent disappearance of hydrated cement phases (Engelsen et al., 2009). 

Except for RCA-TX1, all other RCAs showed slight buffering capacity up to the pH of 11.5. This 

was ascribed due to the presence of portlandite, AFt, AFm and calcium-silicate-hydrates in RCAs 

(Isenburg and Moore, 1992). In the pH range of 5 to 6, a plateau was identified, signifying that 

RCAs were least sensitivity to the acid additions. The presence of calcium carbonate due to RCA 

carbonation, gypsum and gibbsite were the reasons of higher buffering capacity in this pH zone. 

Previous studies indicated that these minerals have the buffering capacities in the pH range of 5 to 

6 (Chen et al., 2009; Komonweeraket et al., 2015b). RCAs with higher degree of carbonation 

showed larger acid neutralizing capacities in this pH region. The order of RCA carbonations from 

ANC analyses were determined based on the acid requirements to drop the solution pH below 4.5. 

The ANC analyses indicated that the ascending order of RCA carbonation was: LAB, B, MN, IA2, 

IA1, TX2 and TX1. This observation was analogous with the TGA analyses, effluent alkalinity 

and Ca leaching in method comparisons section.  
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Figure 5.9(b-c) shows the leaching behavior of Ca and Mg from RCAs as a function of 

solution pH. Both the Ca and Mg showed strong cationic leaching behaviors where concentrations 

decreased progressively with an increase in effluent pH. At lower pH, higher concentrations of 

cationic elements were observed due to the dissolution of metal bearing minerals and reduced 

sorption. Higher pH promoted the precipitation and sorption of dissolved ions, leading to a 

consequent decrease in effluent concentrations (Komonweeraket et al., 2015b). Comparing the Ca 

and Mg leaching patterns, significant differences were observed depending on RCA carbonation 

levels. The variations were more prominent at neutral to alkaline pH conditions. The leaching of 

Ca and Mg were the minimum for the most carbonated RCA-TX1. The least carbonated RCA-

LAB leached the highest concentrations of Ca throughout the pH range. For Mg, the highest 

concentrations were found for RCA-B, which was the second least carbonated RCA used in this 

study. As indicated in Table 5.2, RCA-B had the highest Mg content determined by both XRF and 

total elemental analyses. Additionally, the differences in the leaching of Mg reduced noticeably at 

natural pH conditions.  

As indicated in Figure 5.9(d), the leaching of Cr from the RCAs showed significant pH 

dependence. The maximum Cr concentrations were associated with highly acidic pH environments 

(pH < 4). Except for RCA-MN and IA2, the leached concentrations of Cr decreased at slight acidic 

to neutral pH conditions. In the pH range of 7 to 10.5, a concentration plateau was identified which 

was followed by subsequent decreased and increase in Cr leachability at pH values of 12 and 13, 

respectively. As mention earlier, Cr is likely to leach as chromate in alkaline and oxidizing 

conditions. The oxyanionic leaching pattern of Cr observed in this study evidently supported this 

claim. Previous studies also reported similar leaching behavior of Cr from alkaline waste materials 

such as fly ashes, air pollution control (APC) residues and RCAs (Engelsen et al., 2010; Izquierdo 
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and Querol, 2012; Quina et al., 2009). In case of RCA-MN and IA2, the leaching plateau was not 

observed, and thus the Cr concentration decreased gradually up to the pH value of 12. From XRD 

analyses the presence of ettringite was identified in these two RCAs. Several studies pointed out 

that CrO42- can be incorporated in ettringite by substituting SO42- (Izquierdo and Querol, 2012; 

Zhang and Reardon, 2003). Therefore, it was theorized that the presence of ettringite and 

consequent immobilization of CrO42- decreased the effluent Cr concentrations from these RCAs. 

According to Engelsen et al. (2009), calcium sulphoaluminate hydrates (ettringite) started to 

destabilized at pH lower than 9.5. As shown in Figure 5.9(d), Cr concentrations of RCA-MN and 

IA2 deviated from oxyanionic leaching patters at pH higher than 8.8, indicating the possible 

formation and precipitation of CrO42--ettringite solid solution. Additionally, RCA carbonation had 

relatively less influence on the leaching of Cr. However, effluent Cr concentrations were inclined 

to be higher for higher degree of RCA carbonation. Furthermore, except for RCA-MN and IA2, 

leached Cr concentrations from all the other RCAs exceeded the U.S. EPA specified maximum 

contaminant level (MCL) of 0.1 mg/L for almost the whole pH range.  

The concentrations of Ba were higher in acidic pH conditions which dropped at neutral pH 

values (Figure 5.9e). For RCA-LAB, B, IA1 and TX2, the leaching of Ba was almost pH 

independent in the pH range of 7 and 10 but increased slightly when the solution pH was 12. 

Diversely, RCA-TX1 showed cationic leaching pattern of Ba with the lowest effluent 

concentrations in neutral to alkaline pH range. Similar leaching patterns of Ba were observed from 

fly ashes (Zhang et al., 2016) and fly ash treated soils (Komonweeraket et al., 2015b) and steel 

slag (Fällman, 2000) in association with the dissolution/precipitation of barite (BaSO4), witherite 

(BaCO3) and and/or (Ba,Sr)SO4. The leaching patters of Ba and Cr from RCA-MN and IA2 were 
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identical, indicating possible formation and precipitation of Ba(S, Cr)O4 solid solution in alkaline 

conditions (Astrup et al., 2006).  

The pH dependent leaching of SO42- was the highest in acidic conditions (pH < 7) with a 

monotonic decrease in concentrations at elevated pH conditions. Distinct leaching behaviors of 

SO42- were identified depending on the degree of carbonation of the RCA. The least carbonated 

RCA-LAB leached the highest concentrations of SO42- in the pH range of 2 to 11, while highly 

carbonated RCA-TX1 leached the lowest concentrations in this pH zone. In material pH range, the 

observed trend was opposite. Highly carbonated RCA leached higher SO42- compared to less 

carbonated RCAs in the pH range of 11 to 13. Additionally, a V-shape of SO42- leaching curves 

was observed for all the RCAs in this pH region which was also reported by previous studies 

(Engelsen et al., 2009; Zhang et al., 2016). The V-shape of SO42- leaching curve also indicated the 

possible substitution of SO42- by oxyanions (Butera et al., 2015). The leaching curve of Ba, Cr and 

SO42- showed the similar V-shapes in alkaline pH conditions.  

5.5.7 Geochemical Modeling 

Geochemical modeling was performed on all the RCAs to evaluate whether the leaching 

of elements from the RCAs was controlled by solubility or sorption mechanism. Previous studies 

indicated that geochemical equilibria models are successful in predicting the aqueous 

concentrations of elements based on thermodynamics data, if the leaching was controlled by 

solubility (Allison et al., 1991; Bestgen et al., 2016; Komonweeraket et al., 2015a). Therefore, 

Visual MINTEQA2 was implemented in calculating aqueous phase equilibrium concentrations 

and saturation indices of the leachate with respect to the solubility controlling solids or minerals. 

Aqueous complexation reactions at a fixed pH was allowed as recommended by Apul et al. (2005). 

The pH and effluent concentrations from pH-dependent leach tests were considered as the input 

data. The dominant oxidation states of the elements were assumed to be Ca2+, Mg2+, Ba2+ and 
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CrO42-. Among all the elements reported in this study, Cr is the redox sensitive element and could 

occur in Cr3+ and Cr6+ oxidation states. However, as discussed in the preceding sections, alkaline 

material pH, WLT effluent concentrations and pH dependent leaching pattern of Cr from RCAs 

suggested Cr6+ oxidation state.  

Despite of the differences in RCA source of origin and degree of carbonation, homogeneity 

in leaching behavior and leaching controlling mechanisms was observed. As indicated in Figure 

5.10(a), Gypsum and anhydrite were identified as the solubility controlling minerals for Ca2+ in 

the pH range of 2 to 9. Under alkaline conditions, carbonate minerals became important and calcite 

could potentially control the aqueous concentrations of Ca. However, oversaturation with respect 

to calcite was observed which could happen due to the presence of gypsum (Langmuir, 1997). 

According to Langmuir (1997), gypsum is  much more soluble than calcite and consequently 

precipitate calcite by providing Ca as a common ion in the leachate. Additionally, at pH higher 

than 10 portlandite may play a significant role on the leaching of Ca.  

As seen from Figure 5.10(b), magnesite and dolomite have comparable solubility and may 

control the leaching of Mg in alkaline pH conditions (Komonweeraket et al., 2015a). Previous 

studies identified dolomite as the solubility controlling mineral for Mg leaching from alkaline 

waste materials such as fly ash (Garavaglia and Caramuscio, 1994), fly ash stabilized soils 

(Komonweeraket et al., 2015a) and steel slag (Apul et al., 2005). However, at acidic pH conditions, 

Mg leaching from the RCAs was not controlled by solubility. 

Depending on eluate pH, carbonate and sulfate minerals had the most significant role on 

the leaching of Ba from the RCAs (Figure 5.10c). Sulfate mineral of barium (barite) appeared to 

control the leaching of Ba in acidic to moderate alkaline pH values (pH 2 to 10). At highly alkaline 

conditions, witherite is less soluble compared to barite, and therefore controlled the leaching of Ba 
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(Mudd et al., 2004). Oversaturated was observed in the leachate with respect to barite and 

witherite. Zhang et al. (2016) also reported oversaturation with respect to Ba minerals in fly ash 

leachate. From geochemical modeling, Komonweeraket et al. (2015a) claimed that the 

oversaturation was due to the possible formation and dissolution/precipitation of (Ba, Sr)SO4 and 

Ba(S, Cr)O4 solid solutions. However, the claim on (Ba, Sr)SO4 solid solutions formation could 

not be tested in this study since the effluent concentrations of Sr was not quantified.  

Figure 5.10(d) indicates that the leaching of Cr6+ in RCA leachates was not controlled by 

solubility. A number of studies also concluded that the leaching of Cr6+ from alkaline waste 

materials could not be described by solubility mechanism (Bestgen et al., 2016; Engelsen et al., 

2010; Zhang et al., 2016). Astrup et al. (2006) claimed that CaCrO4 and Cr(VI)-ettringite solid 

solution may control the leaching of Cr6+ from alkaline waste materials (pH > 10). Figure 5.10(e) 

provides the variation of log activity of Cr6+ corresponding to the log activities of Ca2+ along with 

the solubility line of CaCrO4. The log activities of Cr6+ were in close proximity to CaCrO4 

solubility line, indicating that the leaching of Cr6+ in RCA leachate could be controlled by CaCrO4. 

Figure 5.7 also suggested that Cr6+ solubility was controlled by CaCrO4, where positive 

correlations between the effluent Cr-Ca and Cr-SO4 concentrations were observed. Additionally, 

an attempt was made to investigate the probable formation of Ba(S, Cr)O4 solid solutions, as 

suggested by the oversaturated log activity diagram of Ba. Figure 5.10(f) shows the log activities 

of Cr6+ as a function of the activities of Ba2+. The solubility line of CaCrO4 was approximately 6 

to 12 order of magnitude higher than the log activities of Cr6+-Ca2+, whereas solubility line of 

BaCrO4 was approximately 3 to 8 order of magnitude higher. This indicated that the leaching of 

Cr6+ in RCA effluent was dominated by BaCrO4 rather than CaCrO4 alone. Moreover, when the 

WLT effluent concentrations of Cr were plotted against the concentrations of Ba, a positive 
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correlation was found (not included). The trend was stronger for highly carbonated RCAs 

compared to the less carbonated ones. Zhang et al. (2016) also found that the solubility of Cr6+ was 

controlled by BaCrO4 in highly alkaline fly ash leachate.  

5.5.8 Saturation Conditions and Leaching of Elements 

The water retention characteristics of the RCAs are presented in Figure 5.11. All of the 

RCAs showed low water retention capacities. Depending on RCA type, the volumetric moisture 

content of the RCAs at saturated conditions varied within the range of 30% to 37% (Figure 5.11a). 

RCA-MN had the lowest saturated moisture content, while RCA-IA1 had the highest. RCA-IA1 

had the maximum amount of sand size particles and was classified as poorly graded sand (Table 

5.1). Smaller particle sizes are known to have larger water retention capacities due to higher 

surface areas for water adsorption (Gupta and Larson, 1979). RCA-MN was the second most 

coarse grained RCA after RCA-LAB, and hence was expected to have relatively low saturated 

moisture content. Additionally, it was observed that volumetric moisture content of the RCAs did 

not change up to the matric potential of 2 kPa, indication the air entry pressure. At higher suction 

values, moisture contents of the RCAs varied within a narrow range. RCA-MN and TX2 showed 

relatively greater water holding capacities at higher matric potentials. Furthermore, the degree of 

saturation of the RCAs as a function of matric potential is presented in Figure 5.11(b). The RCAs 

became unsaturated with the increase in matric potential by discharging pore solutions. RCA-MN 

and TX2 had higher degree of saturation compared to the others at similar matric potentials.  

The effluent pH values at different matric potentials are provided in Table 5.7. As seen 

from Table 5.7, the solution pH was the highest in the matric potential (suction) range of 2 to 5 

kPa. This may have happened due to first-flush leaching of alkaline substances at near saturation 

conditions (Cetin et al., 2012c). As indicated in Figure 5.12, first-flush leaching patterns of Ca and 

Ba were also observed with higher leached concentrations in this suction range. Except for RCA-
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TX1, after the initial first-flush release, Ca concentrations decreased to minimum at 10 kPa matric 

potential. For RCA-MN, IA1 and IA2, Ca concentrations increased at matric potential higher than 

10 kPa. Conversely, leached concentrations of Ca remained at lower levels for RCA-TX2, B and 

LAB. RCA-TX1 showed a unique leaching pattern depending on matric suction. The 

concentrations of Ca increased with an increase in matric potential, though the increase rates were 

lower at higher matric potential values. Regardless of RCA degree of carbonation, similar leaching 

patterns of Ba were observed for all of the RCAs. RCA-B and LAB leached higher amounts of Ba, 

while Ba concentrations were lower in RCA-TX1 and TX2 pore solutions. As seen in Figure 5.13, 

three distinct leaching behaviors of Mg were observed depending on matric potential. The initial 

high Mg concentrations decreased to minimum values when matric potentials were approximately 

3 kPa. For RCA-MN, IA1 and B a subsequent increase in Mg concentrations was observed. From 

XRF and total elemental analyses, maximum Mg contents were identified in these three RCAs. 

With the increase in matric potential, pH of the pore solutions decreased which led to an increase 

in solution Mg concentrations. For RCA-IA2 and TX2 an increase in Mg concentrations was 

detected at around 5 kPa matric potentials, which eventually decreased at 10 kPa matric potential 

values. A subsequent slight increase in Mg concentrations were observed for IA2 and TX2 at 

higher potentials. For RCA-TX1 and LAB, Mg concentrations remained almost unchanged in 

between 3 and 20 kPa matric potentials. Elevated Mg concentrations were observed for TX1 and 

LAB pore solutions at a matric potential of 32 kPa. Pore-water concentrations of Cr were found to 

be influenced by RCA degree of carbonation (Figure 5.13d-f). For RCA-MN, B and LAB, Cr 

concentrations were the highest at near saturation conditions, which subsequently decreased at 2 

kPa matric potentials and remained stable for rest of the matric potential range. For other RCAs, 

Cr concentrations increased up to 2 kPa of matric potentials and became relatively stable with 



www.manaraa.com

181 

 
 

respect to matric potential. Highly carbonated RCA-TX1 and TX2 tended to leach higher Cr at 

unsaturated conditions.  

5.6 Conclusions 

A study was conducted to investigate the leaching behavior of elements (Ca, Mg, Ba and 

Cr), sulfate (SO4) and eluate alkalinity from RCAs collected from a variety of geographical 

locations. Laboratory batch water leach tests (WLT), toxicity characteristic leaching procedure 

(TCLP), synthetic precipitation leaching procedure (SPLP) and pH-dependent leach tests were 

performed. Comparisons between the effluent leaching characteristics were provided depending 

on RCA degree of carbonation, leach test method, saturation condition, particle size and liquid to 

solid ratio. Additionally, geochemical equilibrium model Visual MINTEQ was implemented to 

access the leaching controlling mechanisms of the elements. Some of the salient features of this 

study are summarized as follow: 

When the RCAs were fractionized into different particle sizes, it was found that the effluent 

pH, electric conductivity (EC), alkalinity and leached concentrations of Ca, Ba, Cr and SO4 

generally decreased with an increase in RCA particle sizes. The Mg concentrations fluctuated, 

with a propensity to increase at larger particle sizes.  

For carbonated RCAs, the maximum pH, EC, alkalinity and Ca concentrations were 

associated with the particle of 1.19 mm to 0.149 mm in size. Particles finer than 0.149 resulted the 

highest pH, EC, alkalinity and Ca concentrations for less carbonated RCAs.  

With an increase in liquid to solid ratio (L/S), effluent pH, EC, alkalinity and leached 

concentrations of Ca, Ba and Cr decreased. Mg concentrations were inclined to increase with an 

increase in L/S ratio. Less carbonated RCAs leached higher amount of SO4 at larger L/S ratios, 

while the observed behavior was opposite for highly carbonated ones.  
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Leaching of constituents was considerably influenced by the degree of RCA carbonation. 

RCAs with greater degree of carbonation leached higher concentrations of Cr and SO4 compared 

to the less carbonated ones. The effluent pH, EC, alkalinity and leached concentrations of Ca and 

Ba were higher for less carbonated RCAs.  

 Schoeller diagrams indicated that the effluent alkalinity of less carbonated RCAs could be 

associated with the dissolution of calcium minerals, whereas other alkaline minerals became 

important with an increase in RCA carbonation level. Leaching of Ca from highly carbonated 

RCAs was possibly dominated by gypsum and/or anhydrite. 

Probable interdependent leaching of Cr and Ba from less carbonated RCAs was predicted 

by the Schoeller diagram. For highly carbonated RCAs, it was anticipated that the leaching of Ba 

was controlled by witherite rather than barite.  

Leaching fingerprints of the RCAs indicated that with the increase in L/S ratio, the leaching 

behavior of less carbonated RCA drifted towards the highly carbonated ones with less variation in 

effluent concentrations of the constituents.  

Effluent pH, EC, alkalinity and Cr concentrations significantly increased with an increase 

in leached Ca concentrations. Ba concentrations increased when the effluent alkalinity was higher. 

The leaching of Cr from highly carbonated RCAs was more sensitive with respect to Ca. 

For less carbonated RCAs, Ca concentrations were comparable in WLT and TCLP 

effluents, whereas similar concentrations of Ca were observed in WLT and SPLP effluents of 

highly carbonated RCAs. In general, TCLP effluent concentrations of Ca were higher compared 

to WLT and SPLP effluent Ca concentrations.  

Least carbonated RCAs leached the highest concentrations of Mg in SPLP effluent, while 

for moderately to highly carbonated RCAs, TCLP effluent concentrations of Mg were the highest. 
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The TCLP effluent of the RCAs was found to be the most alkaline which was followed by 

WLT and SPLP alkalinity. TCLP alkalinity increase with an increase in RCA carbonation level. 

For WLT and SPLP, effluent alkalinity decreased at elevated RCA degree of carbonation. 

Generally, the WLT effluent Ba concentrations were the highest, whereas the lowest 

concentrations of Ba were found in TCLP effluent. In case of Cr and SO4, WLT effluent 

concentrations were the highest for higher degree of carbonation. Diversely, fresher RCAs leached 

higher Cr and SO4 concentrations in TCLP effluents. 

Depending on the degree of carbonation, RCAs showed distinct acid neutralization 

capacities. Highly carbonated RCAs showed higher buffering capacities in the pH range of 5 to 6 

compared to the less carbonated ones. 

The pH-dependent leaching of Ca, Mg and SO4 followed a cationic leaching pattern. In the 

pH range of 7 to 13, Ca and Mg concentrations were lower for highly carbonated RCAs compared 

to the fresher ones. In material pH conditions, carbonated RCAs resulted higher SO4 

concentrations, while SO4 leaching were lower for aged RCAs at every other pH values. 

Cr showed an oxyanionic leaching pattern with lesser influence of RCA degree of 

carbonation. The presence of ettringite significantly altered the leaching pattern of Cr. The most 

carbonated RCA showed a cationic leaching pattern of Ba, whereas for the other RCAs, Ba 

concentrations were found to be pH independent.  

Geochemical modeling indicated that the leaching of Ca, Mg and Ba from the RCAs were 

controlled by solubility. The solubility mechanism was ineffective in describing the leaching of 

Cr. Geochemical modeling suggested that leaching of Cr from the RCAs could be controlled by 

BaCrO4 and CaCrO4 solid solutions. 
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Effluent pH, Ca and Ba concentrations were the highest in the matric potential range of 2 

to 5 kPa. Depending on carbonation level, leached Ca concentration varied with the RCA degree 

of saturation/matric potential. Leaching of Mg with matric potential was influenced by Mg content 

of the RCA. Cr leaching at different saturation conditions was greatly influenced by carbonation. 

Briefly, results indicated that the leaching characteristics of RCA are needed to be 

evaluated focusing the RCA degree of carbonation. For the leaching assessment of RCA, the 

selection of the most appropriate method was found to be dependent on RCA degree of 

carbonation. The pH dependent leaching of the elements were also controlled by RCA carbonation 

level.   
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5.8 Tables and Figures 

Table 5.1 Physical properties of recycled concrete aggregates used in this study 

Properties RCA-
MN 

RCA-
IA1 

RCA-
IA2 

RCA-
TX1 

RCA-
TX2 

RCA-
B 

RCA-
LAB 

Gravel Content (%) 94.1 48.8 82 93.4 68.8 86.4 94.8 
Sand Content (%) 4.9 51.1 17.8 5.8 31.1 12.9 4.8 
Cu 2.1 7.9 7.6 2.1 32 4.6 2.7 
Cc 1.4 0.6 1.8 1.1 3.6 2.4 1.2 
θ (%) 2.1 2.2 3.2 1.1 1.7 2.5 1.4 
ωopt (%) 12.6 14.8 14.3 10.9 14.4 13.8 13.6 
γdmax (kN/m3) 18.3 19 18.4 19 19.7 18.2 18.8 
USCS Classification GP SP GW GP GP GW GP 
AASHTO Classification A-1-a A-1-a A-1-a A-1-a A-1-a A-1-a A-1-a 

Note: Gravel content: > 4.75 mm, Sand content: 4.75 – 0.075 mm, Fines Content: < 0.075 mm, Cu: Coefficient of 
uniformity, Cc: Coefficient of curvature, θ : Air-dry moisture content by weight, ωopt : Optimum moisture content, 
γdmax : Maximum dry density  
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Table 5.2 Chemical composition of recycled concrete aggregates used in this study 

Oxide 
Content 
(%) 

RCA-
MN 

RCA-
IA1 

RCA-
IA2 

RCA-
TX1 

RCA-
TX2 RCA-B RCA-

LAB 

SiO2 46 37 41.6 30.8 38.1 47.7 34.7 
Al2O3 5.6 4.4 4.6 1.7 2.3 5.8 4.3 
Fe2O3  2.2 1.8 1.9 2.3 2.1 3 1.2 
CaO  23.9 28.5 28.2 34.9 30.9 22.0 33.4 
MgO 3.2 3.3 2.2 1.5 2 4 1.7 
SO3  0.61 0.66 0.7 0.41 0.46 0.58 0.93 
K2O  0.97 0.8 0.79 0.25 0.42 1.11 0.82 
Na2O  0.99 0.94 0.88 0.08 0.08 1.22 0.91 
BaO 0.03 0.03 0.04 0.01 0.01 0.04 0.02 
SrO  0.04 0.04 0.04 0.08 0.07 0.04 0.04 
Mn2O3  0.08 0.08 0.09 0.08 0.08 0.15 0.04 
LOI  18.7 22.3 21.8 27.7 23.3 17.1 14.2 
pH 12.05 11.84 12.02 11.12 12.03 12.43 12.5 
Total Metal Content (mg/kg) 
Ca 84,286 93,333 100,343 140,381 103,086 73,943 126,857 
Mg 9,933 11,581 8,337 6,401 8,411 13,143 6,406 
Ba 80 71.8 62.2 45.9 52.9 54.1 46.7 
Cr 27 21.3 25 26.8 27.9 25 23.7 
S 7,667 8,160 7,829 9,051 7,509 7,246 11,211 
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Table 5.3 Mineralogical compounds of the recycled concrete aggregates (RCA) identified by 
X-ray diffraction (XRD) 

RCA Type Minerals Ideal Formula 

RCA-MN 
RCA-IA2 

Quartz, calcite, dolomite, 
portlandite, ettringite  

SiO2, CaCO3, CaMg(CO3)2, Ca(OH)2, 
Ca6Al2(SO4)3(OH)12. 26H2O 

RCA-IA1 
RCA-B 
RCA-LAB 

Quartz, calcite, dolomite, 
portlandite, albite, 
anorthite 

SiO2, CaCO3, CaMg(CO3)2, Ca(OH)2, NaAlSi3O8, 
CaAl2Si2O8 

RCA-TX1 
RCA-TX2 Quartz, calcite, dolomite SiO2, CaCO3, CaMg(CO3)2 
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Table 5.4 Effect of L/S ratio on pH and electric conductivity of WLT effluent 

RCA ID 
 Liquid to Solid Ratio (L/S) 
 5 10 15 20  5 10 15 20 
 pH  Electric Conductivity (mS/cm) 

RCA-MN  12.12 12.05 11.98 11.91  9.46 7.64 6.67 6.02 
RCA-IA1  12.09 11.84 11.84 11.82  6.56 5.33 4.95 4.74 
RCA-IA2  12.15 12.02 11.88 11.84  6.49 5.82 5.01 4.83 
RCA-TX1  11.14 11.12 11.13 11.12  2.94 2.79 2.72 2.71 
RCA-TX2  12.12 12.03 12 11.87  4.45 4.29 4.08 3.94 
RCA-B  12.52 12.43 12.38 12.37  9.28 8.67 7.35 7.5 
RCA-LAB  12.56 12.5 12.47 12.45  10.73 10.3 9.63 8.65 
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Table 5.5 Effect of particle size on pH and electric conductivity of WLT effluent 

Sieve 
Number 

Sieve 
Opening 
(mm) 

RCA-
MN 

RCA-
IA1 

RCA-
IA2 

RCA-
TX1 

RCA-
TX2 RCA-B RCA-

LAB 

  pH 
3/8” 9.51 11.75 11.61 11.43 9.54 10.29 12.18 12.3 
#4 4.76 12.01 11.64 12.12 9.22 11.41 12.19 12.27 
#8 2.38 11.92 11.9 12.03 9.15 11.49 12.31 12.41 
#16 1.19 11.91 11.93 11.98 8.93 11.8 12.29 12.46 
#30 0.595 12.03 11.93 11.87 11.33 11.96 12.43 12.53 
#50 0.297 11.97 11.92 11.82 11.31 11.92 12.49 12.54 
#100 0.149 11.78 11.91 11.94 11.3 11.98 12.49 12.56 
#200 0.074 11.77 11.88 11.9 11.33 11.95 12.54 12.61 
  Electric Conductivity (mS/cm)  
3/8” 9.51 3.593 3.15 2.821 2.489 2.422 3.725 6.74 
#4 4.76 5.028 3.164 5.059 2.573 2.865 3.871 6.96 
#8 2.38 4.101 3.807 4.265 2.633 3.017 5.916 8.8 
#16 1.19 3.903 4.097 4.067 2.665 2.922 5.968 9.75 
#30 0.595 4.905 3.825 4.011 2.912 4.398 7.093 10.04 
#50 0.297 4.224 3.823 3.949 2.865 4.286 7.676 10.15 
#100 0.149 3.557 3.885 4.229 3.011 4.475 9.439 10.59 
#200 0.074 3.531 3.437 4.012 3.158 4.33 9.159 10.72 
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Table 5.6 RCA effluent pH, electric conductivity, alkalinity and leached concentrations of elements in different leach tests 

Tests RCA  
ID pH 

Conducti
vity 
(mS/cm) 

Ca 
(mg/L) 

Mg 
(mg/L) 

Ba 
(mg/L) 

Cr 
(mg/L) 

SO4 
(mg/L) 

Alkalinity 
(mg/L 
CaCO3) 

Batch Water 
Leach Test 
(L/S = 10) 

RCA-MN 12.05 7.64 303 0.014 0.485 0.071 20.24 1060 
RCA-IA1 11.84 5.33 167 0.015 0.555 0.049 30.24 500 
RCA-IA2 12.02 5.82 206 0.011 0.626 0.037 19.64 780 
RCA-TX1 11.12 2.79 55 0.057 0.037 0.175 133.98 60 
RCA-TX2 12.03 4.29 113 0.017 0.224 0.204 92.24 240 
RCA-B 12.43 8.67 436 0.025 0.306 0.048 14.67 1280 
RCA-LAB 12.5 10.3 504 0.012 0.889 0.054 19.92 1480 

Toxicity 
characteristic 
leaching 
procedure 
(TCLP) 

RCA-MN 11.57 7.65 525 0.642 0.243 0.106 86.22 2660 
RCA-IA1 11.03 7.38 477 5.57 0.241 0.08 166.35 2840 
RCA-IA2 11.62 7.74 515 0.684 0.356 0.076 75.41 2760 
RCA-TX1 7.12 7.84 504 9.79 0.181 0.141 100.39 3000 
RCA-TX2 10.18 7.26 494 9.68 0.202 0.122 87.05 2520 
RCA-B 11.81 7.99 522 0.34 0.211 0.065 74.89 2680 
RCA-LAB 11.92 8.24 553 0.368 0.169 0.139 90.09 2400 

Synthetic 
Precipitation 
Leaching 
Procedure 
(SPLP) 

RCA-MN 12.24 4.07 249 0.078 0.228 0.066 31.17 640 
RCA-IA1 11.94 1.82 133 0.072 0.209 0.048 33.16 300 
RCA-IA2 12.09 2.82 168 0.061 0.35 0.036 15.91 360 
RCA-TX1 10.94 0.34 35 0.183 0.019 0.087 62.87 20 
RCA-TX2 11.7 1.04 76 0.518 0.081 0.149 57.14 120 
RCA-B 12.25 4.69 282 0.694 0.181 0.037 16.02 660 
RCA-LAB 12.33 4.84 299 0.654 0.349 0.065 19.08 740 
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Table 5.7 pH and electric conductivity of the RCA effluent at different matric potentials 

Matric 
Potential 
(kPa) 

 RCA-
MN 

RCA-
IA1 

RCA-
IA2 

RCA-
TX1 

RCA-
TX2 RCA-B RCA-

LAB 

 pH 
0.37  NA NA 12.07 NA 8.95 10.47 12.05 
1.96  9.36 11.9 12.09 8.21 11.76 12.39 12.61 
2.94  12.03 12 11.2 8.69 11.89 12.49 12.72 
4.9  12.02 12.01 10.28 9.02 10.81 12.25 12.49 
9.81  10.38 11.06 10.79 8.66 10.88 11.92 12.57 
19.61  9.32 9.19 10.69 8.11 10.19 9.91 11.43 
32.36  NA 8.98 NA 7.96 9.1 9.56 10.06 

Note: NA: Not available due to low drainage volume 
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Figure 5.1 Particle size distribution curves of recycled concrete aggregates (RCA) 

 

Figure 5.2 TGA analyses of the recycled concrete aggregates (RCA) used in this study 
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Figure 5.3 Pressure cell arrangement with RCA core to investigate the water retention 
characteristic and leaching behavior at different matric potentials
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Figure 5.4 Effect of liquid to solid (L/S) ratio on the leaching of (a) Ca, (b) Mg, (c) alkalinity, (d) Ba, (e) Cr, and (d) SO4
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Figure 5.5 Schoeller diagram of the effluent concentrations at liquid to solid ratios (L/S) of (a) 
5:1, (b) 10:1, (c) 15:1, and (d) 20:1 
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Figure 5.6 Effect of particle size on the leaching of (a) Ca, (b) Mg, (c) alkalinity, (d) Ba, (e) Cr, and (f) SO4 
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Figure 5.7 Effect of leached Ca on (a) pH, (b) EC, (c) Alkalinity, (d) leached Ba, (e) leached Cr, and (f) effect of SO4 on Cr in WLT
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Figure 5.8 Method comparisons of leached concentrations of (a) Ca, (b) Mg, (c) alkalinity, (d) Ba, (e) Cr, and (f) SO4 
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Figure 5.9 (a) Acid neutralization capacity, pH dependent leaching of (b) Ca, (c) Mg, (d) Ba, (e) Cr, and (f) SO4 
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Figure 5.10 Log activity of (a) Ca, (b) Mg, (c) Ba, (d) Cr, (e) Cr vs Ca, and (f) Cr vs Ba 
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Figure 5.11 (a) Water retention characteristics, and (c) degree of saturation vs matric potential 
relationship
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Figure 5.12 Effect of metric potential on the leaching behavior of Ca and Ba from the RCA used in this study 
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Figure 5.13 Effect of metric potential on the leaching behavior of Mg and Cr a from the RCA used in this study
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CHAPTER 6.    CONCLUSIONS AND RECOMMENDATIONS 

The main objective of this study is to investigate the leaching behavior of elements from 

recycled materials that are commonly used in pavement constructions. As part of the research 

endeavor, leaching characteristics of cement activated fly ash and slag treated pavement subgrade 

soils, and soil, fly ashes, cement and slag alone were investigated. In addition, laboratory 

evaluation of the leaching behavior of elements from recycled concrete aggregate (RCA) were 

performed. Leaching controlling mechanisms of the elements from fly ash/slag-cement treated 

soils and RCAs were assessed by using geochemical modeling program Visual MINTEQA2. 

Preceding chapters provided specific conclusions and key findings from each research work. The 

more generalized conclusions and recommendations are provided in this chapter as follows: 

 

6.1 Leaching Characteristics of Cement Activated Fly Ash and Slag Treated Soils 

• Effluent pH and electrical conductivity (EC) initially increased with the addition of 

fly and slag content. However, the influence of fly ash and slag at higher addition 

rates were less pronounced. The addition of cement was found to be the most 

dominating factor controlling the pH and EC of the effluent. 

• Addition of cement had diverse influences on the leaching characteristics of soil-

fly ash and soil-slag system. The effluent concentrations of Ca, Ba, Al, SO4 

increased, Mg, Cu and dissolved inorganic carbon (DIC) concentrations decreased, 

Fe, Zn and dissolved organic carbon (DOC) fluctuated, Cr and Mn concentrations 

remained almost unaffected with the addition of cement. 

• Cr, Cu and SO4 concentrations were the highest in TCLP, intermediate in WLT and 

the lowest in SPLP effluents. The highest concentrations of Fe were observed in 
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WLT and were the lowest in TCLP leachates. Therefore, it was concluded that, 

multiple batch leach test methods were required for a comprehensive leaching 

assessment of cement activated fly ash and slag treated soils.  

• Acid/base neutralizing capacity test showed an indication of the hydration products 

and minerals of soil, fly ashes, slag, cement and their mixtures, along with a basis 

for qualitative comparisons. Besides, ANCs revealed that the fly ashes and slag 

used in this study can produce pozzolanic reactions. 

• Ca, Mg, Fe, Mn and SO4 followed cationic leaching patterns, where concentrations 

decreased with the increase in solution pH. Al, Cu and Zn followed amphoteric 

patterns with minimum concentrations at neutral/near neutral pH values and higher 

concentrations at acidic and alkaline conditions. 

• Cr showed oxyanionic leaching behavior with a concentration plateau in the pH 

range of 5.5-10, which was followed by subsequent decrease and increase in 

concentrations at pH of 11.5 and 13, respectively. Cement activation caused highly 

alkaline pH of soil-fly ash and soil-slag mixtures which resulted Cr6+ oxidation state 

of Cr. 

• The leaching of Ba followed both cationic and amphoteric patterns depending on 

material and mixture types. Soil, fly ashes and their mixtures showed amphoteric 

leaching patterns, whereas cement, slag and slag mixtures showed cationic leaching 

of Ba. Effluent Ca concentrations were found to be a controlling factor for the 

leaching of Ba.  
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• The DIC concentrations were maximum at neutral and/or near neutral pH 

conditions. In contrast, the maximum concentrations of DOC were associated with 

highly acidic and alkaline pH values.  

• Geochemical modeling indicated that, except for Cr, the releases of elements from 

cement activated fly ash and slag stabilized soils were controlled by solubility. The 

leaching mechanism of Cr could be sorption controlled.  

• As an overall conclusion, elemental concentrations of soil, fly ash, slag and cement, 

influence of pH, sulfate, dissolved organic and inorganic carbon concentrations 

should be taken into consideration when cement is used as an activator for fly ash 

and slag amended soils. Moreover, it is important to identify the oxidation states of 

redox sensitive elements such as Cr, rather than measuring total leached 

concentrations. 

 

6.2 Leaching Characteristics of Recycled Concrete Aggregates 

• The eluate concentrations of Ca, Ba, Cr and SO4 and pH, electric conductivity (EC) 

and alkalinity decreased with an increase in RCA particle sizes. For carbonated 

RCAs, particles ranging from 1.19 mm to 0.149 mm in sizes resulted higher pH, 

EC, alkalinity and Ca concentrations whereas particles finer than 0.149 mm resulted 

higher pH, EC and Ca concentrations when the RCAs were uncarbonated.  

• Effluent pH, EC, alkalinity and leached concentrations of Ca, Ba and Cr decreased 

with an increase in L/S ratios. As the L/S ratio increased, the leaching 

characteristics of uncarbonated RCAs drifted towards the carbonated ones. This 
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indicated that L/S ratio could be implemented as a surrogate parameter of time, and, 

hence may represent RCA degree of carbonation. 

• The effluent pH, EC, alkalinity and leached concentrations of Ca and Ba were 

higher for less carbonated RCAs. In contrast, carbonated RCAs leached higher 

concentrations of Cr and SO4.  

• The selection of an appropriate leach test for a quick assessment of RCA`s 

contaminant leaching potential considerably depends on carbonation and 

constituent of potential concern. Multiple batch leach tests are required for a 

comprehensive leaching assessment of the RCA. 

• Highly carbonated RCAs showed higher pH neutralization capacities at the pH 

range of 5 to 6 compared to the less carbonated ones. Acid buffering capacity could 

be used as a possible indicator RCA degree of carbonation. 

• Ca, Mg and SO4 followed cationic leaching patterns, Cr followed oxyanionic 

leaching. The effect of carbonation was greatly pronounced on the pH dependent 

release of the elements. Depending on carbonation, the pH dependent leaching of 

Ba could be cationic or pH independent.  

• Geochemical modeling indicated that the leaching of Ca, Mg and Ba from the 

RCAs were controlled by solubility. Solubility mechanism was ineffective in 

describing the leaching of Cr. Geochemical modeling suggested that leaching of Cr 

from the RCAs could be controlled by BaCrO4 and CaCrO4 solid solutions. 

• The highest solution pH and leached concentrations of Ca and Ba were found in the 

matric potential range of 2 kPa to 5 kPa. The leaching of Ca varied with matric 

potential, whereas Cr showed a stable leaching at different matric potentials.  
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6.3 Recommendations  

Several recommendations for future studies on the leaching characterization of cement 

activated fly ash and slag treated soils and different construction and demolition (C&D) wastes are 

provided as follow: 

• This research study is based on the laboratory investigations of the leaching 

characteristics of cement activated fly ash and slag treated soils and RCAs. Field 

investigations along with the laboratory assessments are recommended for a 

comprehensive understanding of the leaching behavior of these materials.  

• Column leach test and a quantitative comparison of the leaching behavior of RCA 

at different saturation condition is recommended. The in-situ and laboratory 

lysimeter tests instrumented with matric potential sensors are recommended to 

investigate the leaching characteristics at different saturation conditions and matric 

potentials.  

• The impact on curing time on the leaching behavior of elements could be 

investigated. An investigation on the effects of curing on the leaching 

characteristics of RCA at different matric suctions is recommended. 

• A groundwater transport modeling is recommended to investigate the constituents’ 

concentrations in soil vadose zone, and groundwater as a function of time and 

space. For this purpose, different numerical modeling programs could be employed 

using the results reported in this study.   
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APPENDIX A.    CEMENT ACTIVATED FLY ASH, SLAG TREATED SOILS 

 

 

Figure A.1 XRD analyses of Class C and F fly ash 
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Figure A.2 XRD analyses of slag and cement 
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Figure A.3 XRD analyses of Iowa loess soil
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Figure A.4 Change in Alkalinity with FA, slag, cement content in WLT, TCLP and SPLP test
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Figure A.5 Change in electrical conductivity with acid/base addition 
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APPENDIX B.    RECYCLED CONCRETE AGGREGATES (RCA) 

B.1 X-Ray Diffraction Analyses (XRD) 

 

Figure B.1 XRD analyses of RCA-IA1 and RCA-IA2 
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Figure B.2 XRD analyses of RCA-MN and RCA-TX1 
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Figure B.3 XRD analyses of RCA-TX2 and RCA-B 
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Figure B.4 XRD analyses of RCA-B 
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B.2 Leaching of Trace Elements from RCA 

Table B.1 Physical and chemical properties of the recycled concrete aggregates (RCA) used in 
this study 

Physical Properties RCA-
MN 

RCA-
IA1 

RCA-
IA2 

RCA-
TX1 

RCA-
TX2 

RCA-
B 

RCA-
LAB 

Gravel Content (%) 94.1 48.8 82 93.4 68.8 86.4 94.8 
Sand Content (%) 4.9 51.1 17.8 5.8 31.2 12.9 4.8 
Fines Content (%) 1 0.03 0.13 0.8 0.02 0.7 0.4 
Cu 2.1 7.9 7.6 2.1 32 4.6 2.7 
Cc 1.4 0.6 1.8 1.1 3.6 2.4 1.2 
θ (%) 2.1 2.2 3.2 1.1 1.7 2.5 1.4 
ωopt (%) 12.6 14.8 14.3 10.9 14.4 13.8 13.6 
γdmax (kN/m3) 18.3 19 18.4 19 19.7 18.2 18.8 
USCS Classification GP SP GW GP GP GW GP 
AASHTO Classification A-1-a A-1-a A-1-a A-1-a A-1-a A-1-a A-1-a 

Chemical Properties (%) 

SiO2 46 37 41.6 30.8 38.1 47.7 34.7 
Al2O3 5.6 4.4 4.6 1.7 2.3 5.8 4.3 
Fe2O3  2.2 1.8 1.9 2.3 2.1 3 1.2 
CaO  23.9 28.5 28.2 34.9 30.9 22.0 33.4 
MgO 4.2 3.3 2.2 1.5 2 4 1.7 
SO3  0.61 0.66 0.7 0.41 0.46 0.58 0.93 
K2O  0.97 0.8 0.79 0.25 0.42 1.11 0.82 
Na2O  0.99 0.94 0.88 0.08 0.08 1.22 0.91 
BaO 0.03 0.03 0.04 0.01 0.01 0.04 0.02 
SrO  0.04 0.04 0.04 0.08 0.07 0.04 0.04 
Mn2O3  0.08 0.08 0.09 0.08 0.08 0.15 0.04 
LOI  17.1 22.3 18.7 27.7 23.3 14.2 21.8 

Total Metal Content (mg/kg) 

Al 5,668 4,629 5,766 5,148 5,634 5,309 5,154 
Cu 26.4 23.1 24.3 23.2 22.2 23 23 
Fe 10,922 9,482 9,749 12,457 11,303 19,086 6,554 
Mn 387 388 449 420 397 650 180 
Zn 75.6 53.4 54.3 37.2 81.3 35.6 22.4 
S 7,667 8,160 7,829 9,051 7,509 7,246 11,211 
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Table B.2 pH, electric conductivity, metal concentrations, and total dissolved carbon, dissolved inorganic carbon and dissolved 
organic carbon concentrations in WLT, TCLP and SPLP effluent 

Test 
Type 

RCA 
Type pH  EC 

(mS/cm) 
Al 
(mg/L) 

Cu 
(mg/L) 

Fe 
(mg/L) 

Mn 
(mg/L) 

Zn 
(mg/L) 

S 
(mg/L) 

TDC 
(mg/L) 

DIC 
(mg/L) 

DOC 
(mg/L) 

WLT 
(L/S = 
10) 

MN 12.05 7.64 1.92 0.267 0.0704 0.0113 0.042 16.9 14.09 6.762 7.326 
IA1 11.84 5.33 1.81 0.255 0.0427 0.0104 0.041 12.2 9.601 2.667 6.934 
IA2 12.02 5.82 1.66 0.229 0.0488 0.0092 0.0192 13.7 7.119 2.984 4.135 
TX1 11.12 2.79 0.694 0.201 0.0289 0.0074 0.0237 27.8 12.54 4.14 8.4 
TX2 12.03 4.29 3.06 0.222 0.0522 0.0081 0.0774 12.3 14.44 5.517 8.927 
B 12.43 8.67 0.667 0.241 0.055 0.0119 0.0463 22.3 13.37 6.461 6.905 
LAB 12.5 10.3 0.577 0.251 0.0461 0.0104 0.0559 23.1 9.367 5.246 4.121 

TCLP 

MN 11.57 7.65 0.778 0.112 0.0296 0.015 0.054 41.2 1147 2.935 1144 
IA1 11.03 7.38 0.464 0.108 0.0366 0.0109 0.0317 43.2 1147 4.295 1143 
IA2 11.62 7.74 0.989 0.11 0.0297 0.0114 0.0588 40.4 1147 2.761 1144 
TX1 7.12 7.84 0.485 0.113 0.0402 0.0115 0.0309 37.4 1147 123.3 1024 
TX2 10.18 7.26 0.647 0.121 0.0607 0.016 0.0722 33.4 1147 2.741 1144 
B 11.81 7.99 0.786 0.1 0.0176 0.0128 0.0302 32.6 1147 3.472 1144 
LAB 11.92 8.24 0.48 0.111 0.0208 0.011 0.0371 48.6 1147 2.611 1144 

SPLP 

MN 12.24 4.07 1.96 0.0807 0.0477 0.0097 0.0362 18 6.93 3.54 3.39 
IA1 11.94 1.82 2.41 0.0632 0.0412 0.0081 0.0377 13.7 12.38 2.575 9.804 
IA2 12.09 2.82 2.36 0.0617 0.0558 0.0086 0.0342 12.9 5.075 2.38 2.695 
TX1 10.94 0.34 0.429 0.0371 0.0279 0.007 0.0186 23.6 4.476 2.239 2.237 
TX2 11.69 1.04 2.78 0.055 0.125 0.0082 0.0463 18.7 4.56 2.191 2.37 
B 12.25 4.69 0.846 0.0785 0.0639 0.0099 0.0462 17.2 5.484 3.018 2.465 
LAB 12.33 4.84 0.754 0.0738 0.0584 0.0096 0.0422 18.4 4.228 2.772 1.456 
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Table B.3 Acid neutralization capacity of the recycle concrete aggregates (RCA) 

RCA Type 
Acid/base Added* Target pH 

Final pH 2 4 5.5 7 8 9 10.5 12 13 

RCA-MN meq/g-dry 9.55 7.86 5 1.92 1.67 1.55 1.32 0.5 -0.79 
Final pH 2.56 3.91 5.70 7.06 8.37 8.83 10.36 11.78 12.96 

RCA-IA1 meq/g-dry 11.35 9.21 5.62 2 1.73 1.5 1 0.38 -0.84 
Final pH 2.47 3.86 5.47 6.85 7.78 9.35 10.26 11.63 12.96 

RCA-IA2 meq/g-dry 10.5 8.25 5.62 2.5 1.75 1.68 1.55 -0.11 -0.86 
Final pH 2.17 4.03 5.50 6.90 7.88 8.86 10.25 12.42 12.90 

RCA-TX1 meq/g-dry 13.59 12.53 6.3 0.5 0.38 0.26 0.09 -0.27 -0.94 
Final pH 2.50 3.98 5.68 7.13 7.95 8.9 10.47 12.48 12.96 

RCA-TX2 meq/g-dry 11.79 10.78 5.54 1.94 1.61 1.37 0.92 0.053 -0.94 
Final pH 2.06 3.94 5.69 7.01 8.28 9.14 10.32 12.02 12.98 

RCA-B meq/g-dry 9.69 8.55 6 2.88 2.67 2.4 1.64 0.69 -0.75 
Final pH 2.48 3.81 5.40 7.41 7.92 9.08 10.59 11.82 12.91 

RCA-LAB meq/g-dry 12.63 11.62 7.15 3.46 3.31 3.15 2.66 0.89 -1.37 
Final pH 2.27 3.75 5.54 6.68 8 9.21 10.85 12.09 13.13 
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Figure B.5 Change in pH and EC with L/S ratio 
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Figure B.6 Schoeller diagram of the leached concentrations at different L/S ratios 
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Figure B.6 (Continued). Schoeller diagram of the leached concentrations at different L/S ratios 
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Figure B.7 Effect of particle size on the leaching characteristics of the RCA 
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Figure B.8 Leached concentrations of the elements at different particle sizes of RCA 
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Figure B.9 Ternary diagrams of the leached concentrations of elements in different test methods
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Figure B.10 Effluent concentrations of TDC, DOC and DIC in different test methods
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Figure B.11 pH dependent leaching behavior of elements 
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Figure B.12 pH dependent leaching of TDC, DIC and DOC
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Figure B.13 pH-log activity diagrams of the elements 
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Figure B.14 Effect of matric potential on the leaching of Al and Cr 
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Figure B.15 Effect of matric potential on the leaching of Fe and Mn 
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Figure B.16 Effect of matric potential on the leaching of Zn and S 
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Figure B.17 Leaching of Al and Ba from the RCAs in USGS leach tests 
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Figure B.18 Leaching of Ca and Cr from the RCAs in USGS leach tests 
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